跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅基銘
研究生(外文):Ji-Ming Luo
論文名稱:有機鉬金屬異氰錯合物的分子內環化與相關的化學反應
論文名稱(外文):Intramolecular Cyclization and Related Reactions of (h7-C7H7)(dppe)MoCNR Isocyanide complexes
指導教授:林英智林英智引用關係
指導教授(外文):Ying-Chih Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:228
中文關鍵詞:異氰錯合物環丙烯
外文關鍵詞:molybdenumazirineoxazolinecyclopropene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新的氰化鉬錯合物(h7-C7H7)(PPh3)Mo(CN) (1)是從[Mo]I {[Mo] = (h7-C7H7)(dppe)Mo}和KCN在甲醇中製備的。而陽離子性的有機鉬異氰錯合物{[Mo]CNCH2R}Br, (R = CN, p-C6H4CN, p-C6H4CF3, C6F5) (2~5) 和丙酮或醛類在鹼的存在下可以得到oxazolinyl 錯合物 [Mo]C=NCHRCR’R”O(R’ = CH3, Ph, C4H9; R’’ = CH3, H) (9~20)。
這些反應的過程可能先經過azirinyl的中間物,其可以透過NMR光譜的偵測分析得知可能經由carbonyl團insertion到azirine的碳氫單鍵中而形成的。錯合物1, 2, 5和 20 的分子結構已經由X-ray繞射光譜所解析。
對於含醛類的oxazolinyl錯合物,它的鏡像異構物可以藉由立體阻礙來控制其選擇性。含有酯基的異氰錯合物{[Mo]CNCH2CO2Me}Br (6)可以環化形成oxazolone錯合物[Mo]C=NCH2C(O)O (8).
Oxazolinyl 錯合物和甲基碘或乙基碘可以得到另一種在三級碳上含不對稱中心的異氰錯合物 (21~24)。 像這樣的異氰錯合物21 也可以直接從異氫錯合物5和甲基碘在鹼中反應得到。含有不對稱中心的異氰錯合物(21, 23)在含甲醇的鹼中可以得到oxazolinyl錯合物(25, 26)。 而錯合物25可以經由異氰錯合物直接和甲醛在鹼中得到。錯合物23和 26 的分子結構已經由X-ray繞射光譜所解析。
錯合物[Ru]CCPh和過量的p-xylene dibromide在THF中可以得到[(h5-C5H5)(PPh3)2Ru+=C=C(Ph)CH2C6H4CH2Br]Br- (27). 錯合物27和[M]CN {[M] = (h5-C5H5)(PPh3)2Ru 或 (h7-C7H7)(dppe)Mo} 在迴流中的THF反應4天可以得到同時含有vinylidene和isocyanide的雙核金屬錯合物{[M]CN+CH2(C6H4)CH2(Ph)C=C=Ru+(PPh3)2(h5-C5H5)}(Br-)2 (28, 29)。 雙核金屬錯合物 28, 29 在含有丙酮和鹼中可以得到中性且含有oxazolinyl和cyclopropenyl的雙核金屬錯合物{[M]C=NCH(CH3)2O(C6H4)CH(Ph)C=C-Ru(PPh3)2(h5-C5H5)} (30, 32)。 而在短時間內可以得到同時含有oxazolinyl和vinylidene的雙核金屬錯合物(31, 33)。
錯合物[Ru]CC(C4H2S)CHO和過量的benzylbromide在THF中4天可以得到錯合物 [Ru]+=C=C(CH2Ph)(C4H2S)CHO (34). 錯合物34在含鹼的去氫化反應中可以得到cyclopropenyl錯合物 Cp(PPh3)2RuC=C(CHPh)(C4H2S)CHO. (35)。
不幸的,運用了各種不同的方法來合成含有兩個異氰(isocyanide)部份的雙陽離子雙核金屬錯合物是失敗的。
The new molybdenum cyanide complex (h7-C7H7)(PPh3)Mo(CN) (1) is prepared from [Mo]I {[Mo] = (h7-C7H7)(dppe)Mo} with KCN in MeOH. The reaction of cationic isocyanide complexes of molybdenum {[Mo]CNCH2R}Br, (R = CN, p-C6H4CN, p-C6H4CF3, C6F5) (2~5) with acetone or aldehyde in the presence of base leads to the synthesis of oxazolinyl complexes [Mo]C=NCHRCR’R”O (R’ = CH3, Ph, C4H9; R’’ = CH3, H) (9~20). This reaction proceeds possibly through an azirinyl intermediate detected by NMR spectra followed by insertion of a carbonyl group into the N-C single bond of the three-membered ring. The molecular structures of 1, 2, 5 and 20 have been determined by an X-ray diffraction study.
For aldehyde, diastereoisomers are observed and diastereoselectivity is controlled by the steric effect. With an ester group, the cationic isocyanide complex {[Mo]CNCH2CO2Me}Br (6), could cyclize to give the oxazolone complex [Mo]C=NCH2C(O)O (8).
Reactions of oxazolinyl complexes with iodomethane or iodoethane give alkylated isocyanide complexes (21~24) which have a stereogenic center in the methyne carbon. Such isocyanide complex 21 could also be obtained from the reaction of the isocyanide complex 5 with MeI in the presence of base. Reaction of the isocyanide complex (21, 23) containing a stereogenic center with base in MeOH afforded oxazolinyl complexes (25, 26). Oxazolinyl complex 25 can be obtained from the reaction of the isoyanide complex 21 with formaldehyde in the presence of base. The molecular structures of 23 and 26 have been determined by an X-ray diffraction study.
Reaction of [Ru]CCPh with an excess of p-xylene dibromide in THF gave [(h5-C5H5)(PPh3)2Ru+=C=C(Ph)CH2C6H4CH2Br]Br- (27). Treatment of Complex 27 with [M]CN {[M] = (h5-C5H5)(PPh3)2Ru and (h7-C7H7)(dppe)Mo} in refluxing THF for 4 d afforded the dinuclear metal complex {[M]CN+CH2(C6H4)CH2(Ph)C=C=Ru+(PPh3)2(h5-C5H5)}(Br-)2 (28, 29) containing metal vinylidene and metal isocyanide moieties. Deprotonation of the dinuclear metal complexes 28, 29 in the presence of base in acetone afforded the neutral dinuclear metal complexes{[M]C=NCH(CH3)2O(C6H4)CH(Ph)C=C-Ru(PPh3)2(h5-C5H5)} (30, 32) containing
oxazolinyl and cyclopropenyl moieties. Alkylation reaction of complex [Ru]CC(C4H2S)CHO with excess benzylbromide in THF for 4 days affords the vinylidene complex [Ru]+=C=C(CH2Ph)(C4H2S)CHO (34). Deprotonation of complex 34 in the presence of base affords the cyclopropenyl complex Cp(PPh3)2RuC=C(CHPh)(C4H2S)CHO. (35)
Unfortunately, diunclear metal complex containing two isocyanide moieties could not be synthesized using various methods.
Structure and numbering of complexes 8-11
Reaction Schemes 12-14
Abstract 15-20
Chapter 1. Introduction 21
1-1 Azirines. 24
1-1-a General preparation of Azirine. 25
1-1-b Metal azirine complexes. 27
1-2 Oxazolines. 28
1-2-a Other transition-metal-promoted cyclization reactions of isocyanide ligands. 29
Chapter 2. h7-Cycloheptatriene-Molybdenum Isocyanide and Azirinyl complexe 33
2-A h7-cycloheptatriene-molybdenum isocyanide complexes 33
2-A-1 Synthesis of the starting material molybdenum isonitrile (h7-C7H7)(dppe)(Mo)CN) complexes 35
2-A-2 Synthesis of molybdenum isocyanide (h7-C7H7)(dppe)(Mo)CNCH2CN complex 38
2-A-3 X-ray Structure Determination 43
2-B h7-cycloheptatriene-molybdenum azirinyl complexes 50
2-B-1 Molybdenum azirinyl complexes 51
2-B-2 Oxazolone complex and its plausible mechanism 54
Chapter 3. h7-Cycloheptatriene-Molybdenum Oxazolinyl complexes 59
3-1 Deprotonation of molybdenum isocyanide complexes with acetone. 60
3-2 Deprotonation of molybdenum isocyanide complexes in the presence of benzaldehyde. 64
3-3 Deprotonation of molybdenum isocyanide complexes with C4H9-CHO. 67
3-4 Regiochemistry of the [Mo] oxazolinyl complexes. 73
Table 1. 31P NMR of oxazoline complexes contain aldehyde and the ratio of stereoisomer 74
3-5 X-ray Structure Determination. 75
3-6 Reactions of molybdenum oxazolinyl complexes in the presence of MeI. 79
3-7 Plausible mechanism for the formation of Mo isocyanide complex 21 82
3-8 Reactions of Mo oxazolinyl complexes in the presence of iodoethane. 84
3-9 Reactions of Mo isocynaide complexes with MeI in the presence of base. 87
3-10 Cyclization reactions of Mo isocyanide complex 20 with n-Bu4NOH to give the oxazoline complex 25. 88
3-11 Plausible mechanism of Mo oxazolinyl complex 24. 92
3-12 Synnthesis of Mo oxazoline complex 25. 95
3-13 X-ray Structure Determination. 96
3-14 Reaction of Mo isocyanide complex 20 with acetone or aldehyde in the presence of n-Bu4NOH. 101
3-15 Miscellaneous reactions of isocyanide or oxazolinyl complexes that lead to some unidentified products or decomposition. 105
Chapter 4. Dinuclear Metal Complexes Containing Azirine, Oxazoline and Cyclopropene 110
4-1 Synthesis of [(h5-C5H5)(PPh3)2Ru+=C=C(Ph)CH2C6H4CH2Br]Br- (27) 111
4-2 Synthesis of dicationic complex [(h5-C5H5)(PPh3)2RuCN+CH2(C6H4)CH2(Ph)C=C=Ru+(PPh3)2(h5-C5H5)](Br-)2 (28) 113
4-3 Synthesis of dicationic complex [(h7-C7H7)(dppe)MoCN+ CH2(C6H4)CH2(Ph)C=C=Ru+(PPh3)2(h5-C5H5)](Br-)2 (29). 116
4-4 Synthesis of neutral complex [(h5-C5H5)(PPh3)2RuC=NCH(CH3)2O(C6H4)CH(Ph)C=C-Ru(PPh3)2(h5-C5H5)] (30). 118
4-5 Synthesis of cationic complex [(h5-C5H5)(PPh3)2RuC=NCH(CH3)2O(C6H4)CH2(Ph)C=C=Ru+(PPh3)2(h5-C5H5)]Br- (31). 120
4-6 Synthesis of neutral complex [(h7-C7H7)(dppe)MoC=NCH(CH3)2O(C6H4)CH(Ph)C=C-Ru(PPh3)2(h5-C5H5)] (32). 123
4-7 Synthesis of cationic complex [(h7-C7H7)(dppe)MoC=NCH(CH3)2O(C6H4)CH2(Ph)C=C=Ru+(PPh3)2(h5-C5H5)]Br- (33) 125
4-8 Synthesis of vinylidenyl complex [Ru]+=C=C(CH2Ph)(C4H2S)CHO. (34) 126
4-9 Synthesis of cyclopropene complex of [Ru]C=C(CHPh)-(C4H2S)CHO. (35) 129
4-10 Synthesis of complex [(h5-C5H5)(dppe)Fe+=C=C(Ph)CH2(C6H4)CH2Br]Br- (36). 132
4-11 Dinuclear metal complexes containing two isocyanides moieties. 134
4-11-a Synthesis of [(h5-C5H5)(PPh3)2RuCNCH2C6H4CH2Br]+Br-. (37) 135
4-11-b Synthesis of [(h7-C7H7)(dppe)MoCNCH2C6H4CH2Br]+Br-. (38) 136
Chapter 5. Conclusion 138
Chapter 6. Experimental Section. 141
Part 1. Experiments of Chapter 2 142
Part 2. Experiments of Chapter 3 150
Part 3. Experiments of Chapter 4 170
Reference 182
Appendix 188
1.ORTEP drawing and crystal data of (h7-C7H7)(dppe)MoCN (1) 188
2.ORTEP drawing and crystal data of [(h7-C7H7)(dppe)MoCNCH2CN]+Br (2) 193
3.ORTEP drawing and crystal data of [(h7-C7H7)(dppe)MoCNC6F5]+Br (5) 204
4.ORTEP drawing and crystal data of [(h7-C7H7)(dppe)Mo-C=NCH(C6F5)CH(C4H9)O] (20) 210
5.ORTEP drawing and crystal data of [(h7-C7H7)(dppe)MoCNCH(CH2CH3)C6F5]+Br (23) 219
6.ORTEP drawing and crystal data of [(h7-C7H7)(dppe)Mo-C=N(CH2CH3)(C6F5)CH2O] (26) 225
1.Moser, M.R., Slocum, D., Eds. Homogeneous transition Metal Catalyzed Reactions; American Chemical Society: Washington, DC, 1992.
2.Hegedus, L. S. Transition Metals in the Synthesis of complex Organic Molecules; University Science: California, 1994.
3.Bruce, D. W., O’Hare, D., Eds, Inorganic Materials; Wiley: Chichester, 1992.
4.Yamamoto, A. Organotransition Metal Chemistry; Wiley: New York, 1986; pp 412.
5.Abel, E. W.; Bennett, M. A.; Burton, R.; Wilkinson, G. J. Chem. Soc. 1958, 4559.
6.Deganello, G. Transition Metal Complexes of Cyclic polyolefins; Academic Press: London, 1979; Chapter 1.
7.Green, M. L. H.; Dennis, K. P. N. Chem. Rev. 1995, 95, 439.
8.(a) Ting, P. C.; Lin, Y. C.; Lee, G. H.; Cheng, M. C. and Wang, Y. J. Am. Chem. Soc. 1996, 118, 6433. (b) Ting, P. C.; Lin, Y. C.; Lee, G. H.; Cheng, M. C. and Wang, Y. Organometallics 1994, 13, 2150. (c) Chang, K. H. and Lin, Y. C. J. Chem. Soc., Chem. Commun. 1998, 1441.
9.Yang, J. Y.; Lo, Y. H.; Huang, S. L.; Lin, Y. C. Organometallics 2001, 17, 3621.
10.(a) Anderson, D. J.; Hassner, A. Synthesis 1975, 483. (b) Laue, J.; Seitz, G. Liebigs Ann. Chem. 1996, 645.
11.Bartmann, E. Angew. Chem., Int. Ed. Engl. 1978, 17, 456.
12.Neber, P. W.; Burgard, A. Ann. Chem. 1932, 493, 281.
13.Smolinsky, G. J. Am. Chem. Soc. 1961, 83, 4483.
14.Knittel, D. Synthesis 1985, 186.
15.Gilchrist, T. L. Aldrichchim. Acta. 2001, 34, 51.
16.Devoghel, G. J.; Eggerichs, T.; Clamont, L. B.; Viehe, H. G. Chimia, 1976, 30, 192.
17.(a) Anderson, D. J.; Hassner, A. Synthesis, 1975, 483. (b) Hanner, A.; Bunnell, C. A.; Haltiwanger, K. J. Org. Chem. 1978, 43, 57.
18.Alvarezboo, P.; Freijanes, E. J. Org. Chem. 1995, 25, 15.
19.(a) Claus, P.; Gilgen, P.; Hansen, H. J.; Heimgartner, H.; Jackson, B.; Schmid, H. Hely. Chim. Acta. 1974, 57, 2173. (b) Gompper, R.; Bartmann, E.; Angew. Chem., Int. Ed. Engl. 1985, 24, 209.
20.Giezendanner, H.; Marky, M.; Jackson, B.; Hansen, H. J.; Schmid, H. Helv. Chim. Acta. 1973, 56, 2611.
21.(a) Bartel, K.; Fehlhammer, W. P. Angew. Chem., Int. Ed. Engl. 1974, 13, 599. (b) Plaia, U.; Fehlhammer, W. P. J. Am. Chem. Soc. 1985, 107, 2171.
22.(a) Facchin, G.; Campostrini, R.; Michelin, R. A. J. Organomet. Chem. 1985, 294, C21. (b) Michelin, R. A.; Facchin, G.; Braga, D.; Sabatino, P. Organometallics, 1986, 5, 2265.
23.Fuchita, K. R.; Hidaka, K.; Morinaga, S.; Hiraki, K. Bull. Chem. Soc. Jpn. 1981, 54, 800.
24.Singleton, E.; Oosthuizen, H. E. Adv. Organomet. Chem. 1983, 22, 209.
25.Michelin, R. A.; Zanotto, L.; Braga, D.; Sabatino, P.; Angelici, J. Inorg. Chem. 1988, 27, 93.
26.Hubert-Pfalzgraf, L. G. Inorg. Chem. 1987, 326, 229.
27.Pombeiro, A. J. L.; Guedea da Silva, M. F. C.; Michelin, R. A. Coord. Chem. Rev. 2001, 218, 43.
28.(a) Tarum, M.; Hahn, F. E. Coord. Chem. Rev. 1999, 182, 175. (b) Singleton, E.; Oosthuizen, H. E. Adv. Organomet. Chem. 1983, 22, 209. (c) Treichel, P. M. Adv. Organomet. Chem. 1973, 11, 21. (d) Bonati, F.; Minghetti, G. Inorg. Chim. Acta 1974, 9, 95.
29.(a) Bourissou, D.; Guerret, O.; Gabbaї, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39. (b) Weskamp, T.; Böhm, V. P. W.; Herrmann, W. A. J. Organomet. Chem. 2000, 600, 12.
30.(a) Green, M. L. H.; Pardy, B. A. Polyhedron 1985, 4, 1035. (b) Bitcon, C.; Breeze, R,; Miller, P. F.; Whiteley, M. W. J. Organomet. Chem. 1989, 364, 181.
31.Ashworth, E. F.; Green, J. C.; Green, M. L. H.; Knight, J.; Pardy, R. B. A. Wainwright, N. J. Chem. Soc., Dalton Trans. 1963, 1977.
32.Malatesta, I.; Bonati, F. Isonitril Complexes of Metals, J. Wiley, 1969; Treichel, P. M. Adv. Organomet. Chem. 1973, 11, 21.
33.Baird, G.; Davies, S. G. J. Organomet. Chem. 1984, 262, 215.
34.(a) Bassett, J. M.; Barker, G. K.; Green, M.; Howard, J. A. K.; Stone, F. G. A.; Wolsey, W. C. J. Chem. Soc., Dalton Trans. 1981, 219; English. (b) Fisher, E. O.; Wittmann, D.; Himmelreih, D.; Cai, R.; Ackermann, K.; Neugebauer, D.; CHBEAM; Chem. Ber. 1982, 115, 3152; German.
35.Hassner, A.; Bunnell, C. A. and Haltiwanger, K. J. Org. Chem. 1978, 43, 57.
36.Yang, J. Y.; Lo, Y. H.; Huang, S. L.; Lin, Y. C. Organometallics 2001, 20, 3621.
37.(a) Padwa, A.; Carlsen, P. H. J. J. Org. Chem. 1978, 43, 2029. (b) Nishiwaki, T. Tetrahedron Lett. 1969, 2049. (c) Singh, B.; Zweig, A.; Gallivan, J. B. J. Am. Chem. Soc. 1972, 94, 1199. (d) Hassner, A.; Alexanian, V. J. Org. Chem. 1979, 44, 3861.
38.(a) Gilgen, P.; Heimgartner, H.; Schmid, H.; Hansen, H. J. Heterocycles, 1977, 6, 143. (b) Nair, V.; Kim, K. H. Heterocycles, 1977, 7, 353. (c) Anderson, D. J.; Hassner, A. Synthesis, 1975, 483.
39.(a) Fehlhammer, W. P.; Bartel, K.; Petri, W. J. Organomet. Chem. 1975, 87, C34. (b) Grundy, K. R.; Roper, W. R. J. Organomet. Chem. 1975, 91, C61.
40.Bertani, R.; Mozzon, M.; Michelin, R. A. Inorg. Chem. 1988, 27, 3265.
41.Singh, M. M.; Angelici, R. J. Inorg. Chem. 1984, 23, 2691.
42.(a) Baddley, W.; Forrest, J.; Stephenson, O. J. Chem. Soc. 1951, 1589. (b) Buddrus, J. Angew. Chem. Int. Ed. Engl. 1972, 11, 1041.
43.Bertani, R.; Mozzon, M.; Michelin, R. A.; Benetollo, F.; Bombieri, G.; Castilho, T. J.; Pombeiro, J. L. Inorg. Chim. Acta 1991, 189, 175.
44.Michelin, R. A.; Zanotto, L.; Braga, D.; Sabatino, P.; Angelici, R. J. Inorg. Chem. 1988, 27, 85.
45.Adams, H.; Bailey, N. A.; Osborn, V. A.; Winter, M. J. J. Organomet. Chem. 1985, 284, C1.
46.Badly, E. M.; Muir, K. W.; Sim, G. A.; J. Chem. Soc., Dalton Trans. 1976, 1930.
47.Stepaniak, R. F.; Payne,N. C.; J. Organomet. Chem. 1973, 57, 213.
48.Shubert, U. Transition Metal Carbene Complexes; Verlag Chemie: Weinheim FRG 1983; p73.
49.Hsu, S. C.; Lin, Y. C., submitted for publication.
50.Singh, M. M.; Angelici, R. J. Inorg. Chem. 1984, 23, 2691.
51.For a discussion of the IR spectra of deuterium-labeled compounds, see Pinchas, S.; Laulicht, I. Infrared Spectra of Labeled Compounds; Academic Press: London, 1971; pp. 65 ff.
52.Westheimer, F. H. Chem. Rev. 1961, 61, 265.
53.Wu, I.Y.; Lin, J. T.; Luo, J.; Li, C. S.; Tsai, C.; Wen, Y. S.; Hsu, C. C.; Yeh, F. F.; Liou, S. Organometallics 1998, 17, 2188.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 1、 王文宇,<物權法定原則與物權債權區分—兼論公示登記制度>,月旦法學第93期,2003年2月。
2. 2、 張志清,<由法律觀點論電子載貨證券作業方式及可行性>,運輸計劃季刊第31卷第2期,2002年6月。
3. 林宏熾(民92a)。美國身心障礙者自我決策與轉銜實務。特殊教育季刊,第88期,頁01-05。
4. 8、 邱錦添,<兩岸法院無單放貨判決之比較與評析>,全國律師第55卷11月號,2001年11月。
5. 7、 邱錦添,<論載貨證券之效力兼述兩岸海商法規定及實證案例之比較分析>,法學叢刊第197期,2005年1月。
6. 4、 梁宇賢,<論載貨證券之比較研究>,中興法學第35期,1993年3月。
7. 3、 張東亮,<清潔載貨證券之舉證責任—最高法院69年度台上字第4124號判決評釋—>,法令月刊第33卷第7期。
8. 李翠玲(民85)。英國殘障者轉銜計畫相關措施之探討。特殊教育季刊,第61期,頁13-16。
9. 9、 程學文,<載貨證券物權效力之探討--從最高法院九十一年臺上字第二四二一號民事判決談起>,律師雜誌第283期,2003年4月。
10. 10、 楊慧如,<載貨證券背面條款的效力--我國與英國實務界對準據法,管轄權條款見解之比較>,法令月刊第46卷12期,1995年12月。
11. 15、 賴阿蕊、吳培基,<電子載貨證券貨物交付程序及錯誤交付之責任>,運輸計劃季刊第31卷,2002年12月。