跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 15:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴羿宏
研究生(外文):I-Hung Lai
論文名稱:金屬/有機改質蒙托土觸媒於模擬廢塑膠氣化合成氣產氫之研究
論文名稱(外文):The study of metal/OMMT catalyst for hydrogen production from simulated waste plastics gasification syngas
指導教授:魏銘彥
口試委員:吳耿東莊桂鶴
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:71
中文關鍵詞:廢塑膠氣化蒙托土觸媒產氫奈米碳管
外文關鍵詞:waste plastic gasificationmontmorillonite catalysthydrogencarbon nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於化石燃料的短缺及核燃料永續性等問題,人們重新產生對再生能源的高度關切。此外,面對龐大的廢塑膠產出,若以再利用及資源化為導向,利用熱處理技術,不僅能妥善處理廢塑膠處置問題,亦可同時產生再生能源或高價值產物,如氫氣及奈米碳材,以達到廢塑膠能資源化之目標。
本研究以蒙托土為擔體,再以多元醇法製備觸媒;並將其應用於催化模擬廢塑膠氣化之混合氣產氫,透過不同條件進行討論,以獲得最佳產氫之操作參數做為評估整體催化效率之依據。
主要探討觸媒製備參數及反應操作條件對模擬廢塑膠氣化混合氣催化產氫之影響,如不同金屬活性相、不同金屬披覆量、不同空間速度及不同反應溫度。特性分析結果顯示以多元醇法製備Ni/OMMT之觸媒,其Ni金屬顆粒大小範圍為30 ± 16 ~ 37 ± 7 nm,且具有NiAl、MMT及SiO2的特徵波峰。不同金屬觸媒之產氫活性測試結果顯示以Ni/OMMT產氫效果最佳。
不同鎳金屬披覆量之產氫活性結果顯示10Ni/OMMT > 5Ni/OMMT > 3Ni/OMMT,當鎳金屬披覆量愈高時,有愈多的鎳金屬活性相負載於擔體上,使活性基位增加,因而有較高之產氫活性。其中10Ni/OMMT觸媒在反應溫度700 ℃、空間速度為15957 h-1時,具有最佳產氫催化活性,氫氣產率為39.9 mmol/g-h,且在反應過程會產出少量的竹節型奈米碳管,其奈米碳管長度約5.75 µm,外徑約32.8 nm,內徑約11.9 nm。


Due to the shortage of fossil fuels and the sustainability of nuclear fuels, the development of renewable energy has been received highly attention. Furthermore, the management of huge amount of plastic waste is also a critical environmental issue. Recycling of plastics through thermal treatments not only can treat plastic waste but also can generate renewable energy and valuable products such as hydrogen and nano-carbon materials.

In this study, organically modified montmorillonite (OMMT) supported catalyst has been prepared through polyol method, and being applied to catalytic gasification of simulated syngas derived from plastic wastes. Several operating conditions has been studied to evaluate the best parameter in terms of hydrogen production. The effects of catalyst preparing parameters and operating conditions on hydrogen production from simulated syngas derived from plastic waste gasification were investigated. From the TEM result, the size of Ni particles of Ni/OMMT catalysts is ranging from 30 ± 16 to 37 ± 7 nm.

Ni/OMMT catalysts exhibited the best catalytic performance. The Ni loading on the support influenced the hydrogen production ability. The catalytic performance of the different Ni loading for hydrogen production is as follows: 10Ni/OMMT > 5Ni/OMMT > 3Ni/OMMT. Moreover, from the results of operating conditions, the 10Ni/OMMT catalyst gave the highest hydrogen production rate of 39.9 mmol/g-h, along with a small amount of bamboo-type carbon nanotubes at 700 ℃with the space velocity of 15957 h -1.


摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究源起 1
1.2 研究目的 3
1.3 研究流程 3
第二章 文獻回顧 6
2.1 再生能源 6
2.2 氫能原料來源 7
2.2.1 化石燃料製氫 8
2.2.2 非化石燃料製氫 11
2.3 熱化學轉換技術 13
2.3.1 氣化技術 14
2.3.2 合成氣重組反應 17
2.4 奈米碳材料的應用 18
2.4.1 奈米碳管之結構及特性 19
2.4.2 奈米碳管製備方法 20
2.4.3 奈米碳管生長機制 21
2.4.4 奈米碳管之應用 22
2.5 觸媒特性 23
2.5.1 觸媒之催化特性 23
2.5.2 觸媒的活性與製備 25
2.5.3 有機改質蒙托土觸媒(OMMT)特性 27
2.5.4 觸媒催化與空間速度之關係 29
2.6 廢塑膠為原料產氫及奈米碳管 30
2.7 文獻總結 33
第三章 實驗材料與方法 33
3.1 實驗藥品與氣體 33
3.2 實驗設備及分析儀器 35
3.3 觸媒製備 36
3.4 活性試驗 37
3.5 觸媒特性分析項目 42
第四章 結果與討論 44
4.1 Metal/OMMT觸媒之特性分析 44
4.1.1 TEM分析 44
4.1.2 XRD分析 46
4.1.3 BET比表面積與孔洞體積 47
4.2 模擬混合氣體不同金屬觸媒的活性測試 49
4.3 不同披覆量對Ni/OMMT之活性影響 53
4.4 不同空間速度之影響 56
4.5 不同反應溫度之影響 58
第五章 結論及建議 62
5.1 結論 62
5.2 未來建議 63
參考文獻 64


Acomb, J.C., Wu, C., Williams, P.T., "Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes", Applied Catalysis B: Environmental, Vol. 147, pp. 571-584, 2014.

Acomb, J.C., Wu, C., Williams, P.T., "Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics", Journal of Analytical and Applied Pyrolysis, Vol. 113, pp. 231-238, 2015.

Acomb, J.C., Wu, C., Williams, P.T., "The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks", Applied Catalysis B: Environmental, Vol. 180, pp. 497-510, 2016.

Apak, S., Atay, E., Tuncer, G., "Renewable hydrogen energy and energy efficiency in Turkey in the 21st century", International Journal of Hydrogen Energy, In press, doi:10.1016/j.ijhydene.2016.05.043

Bahadur, J., Singh, P., Panwar, V., Pal, K., "Catalytic action of graphene oxide towards the growth of carbon nanotubes", Materials Letters, In press,doi:10.1016/j.matlet.2016.05.022

Bashir, S., Liu, J., "Chapter 1 - Nanomaterials and Their Application", Advanced Nanomaterials and their Applications in Renewable Energy. Elsevier, Amsterdam, pp. 1-50, 2015.

Belin, T., Epron, F., "Characterization methods of carbon nanotubes: a review", Materials Science and Engineering: B, Vol. 119, pp. 105-118, 2005.

Betti, C., Badano, J., Maccarrone, M.J., Mazzieri, V., Vera, C., Quiroga, M., "Effect of the sequence of impregnation on the activity and sulfur resistance of Pt–Ni/γ-Al2O3 bimetallic catalysts for the selective hydrogenation of styrene", Applied Catalysis A: General, Vol. 435–436, pp. 181-186, 2012.

Chen, J., Yang, D., Song, D., Jiang, J., Ma, A., Hu, M.Z., Ni, C., "Recent progress in enhancing solar-to-hydrogen efficiency", Journal of Power Sources, Vol. 280, pp. 649-666, 2015a.

Chen, S., Meng, A., Long, Y., Zhou, H., Li, Q., Zhang, Y., "TGA pyrolysis and gasification of combustible municipal solid waste", Journal of the Energy Institute, Vol. 88, pp. 332-343, 2015b.

Cho, M.-H., Mun, T.-Y., Kim, J.-S., "Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar", Energy, Vol. 53, pp. 299-305, 2013.

Corbo, P., Migliardini, F., "Natural gas and biofuel as feedstock for hydrogen production on Ni catalysts", Journal of Natural Gas Chemistry, Vol. 18, pp. 9-14, 2009.

Corneli, E., Dragoni, F., Adessi, A., De Philippis, R., Bonari, E., Ragaglini, G., "Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion", Bioresource Technology, Vol. 211, pp. 509-518, 2016.

Dahbi, S., Aboutni, R., Aziz, A., Benazzi, N., Elhafyani, M., Kassmi, K., "Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller", International Journal of Hydrogen Energy, In press, doi:10.1016/j.ijhydene.2016.05.111

Dou, B., Wang, K., Jiang, B., Song, Y., Zhang, C., Chen, H., Xu, Y., "Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic", International Journal of Hydrogen Energy, Vol. 41, pp. 3803-3810, 2016.

Foletto, E.L., Alves, R.W., Jahn, S.L., "Preparation of Ni/Pt catalysts supported on spinel (MgAl2O4) for methane reforming", Journal of Power Sources, Vol. 161, pp. 531-534, 2006.

Gandía, L.M., Arzamendi, G., Diéguez, P.M., "Chapter 1 - Renewable Hydrogen Energy: An Overview", Renewable Hydrogen Technologies. Elsevier, Amsterdam, pp. 1-17, 2013.

Goodfield, D., Anda, M., Ho, G., "Carbon neutral mine site villages: Myth or reality?", Renewable Energy, Vol. 66, pp. 62-68, 2014.

Guiberti, T.F., Garnier, C., Scouflaire, P., Caudal, J., Labegorre, B., Schuller, T., Darabiha, N., "Experimental and numerical analysis of non-catalytic partial oxidation and steam reforming of CH4/O2/N2/H2O mixtures including the impact of radiative heat losses", International Journal of Hydrogen Energy, In press, doi:10.1016/j.ijhydene.2016.03.009

Hori, K., Matsui, T., Hasuike, T., Fukui, K.-i., Machimura, T., "Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES", Renewable Energy, Vol. 93, pp. 548-561, 2016.

Hosseini, S.E., Wahid, M.A., "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development", Renewable and Sustainable Energy Reviews, Vol. 57, pp. 850-866, 2016.

Hsu, C.-W., Lin, C.-Y., "Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications", International Journal of Hydrogen Energy, Vol. 41, pp. 4489-4497, 2016.

Hua, T., Ahluwalia, R., Eudy, L., Singer, G., Jermer, B., Asselin-Miller, N., Wessel, S., Patterson, T., Marcinkoski, J., "Status of hydrogen fuel cell electric buses worldwide", Journal of Power Sources, Vol. 269, pp. 975-993, 2014.

Iijima, S., "Helical microtubules of graphitic carbon", Nature, Vol. 354, pp. 56-58, 1991.

Inagaki, M., Kang, F., Toyoda, M., Konno, H., "Chapter 2 - Carbon Nanotubes: Synthesis and Formation", Advanced Materials Science and Engineering of Carbon. Butterworth-Heinemann, Boston, pp. 15-40, 2014.

Jang, W.-J., Jeong, D.-W., Shim, J.-O., Kim, H.-M., Roh, H.-S., Son, I.H., Lee, S.J., "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application", Applied Energy, Vol. 173, pp. 80-91, 2016.

Kalogirou, S.A., "Chapter 3 - Solar Energy Collectors", Solar Energy Engineering (Second Edition). Academic Press, Boston, pp. 125-220, 2014.

Ke, Q., Wang, J., "Graphene-based materials for supercapacitor electrodes – A review", Journal of Materiomics, Vol. 2, pp. 37-54, 2016.

Kungkajit, C., Prateepchaikul, G., Kaosol, T., "Influence of Plastic Waste for Refuse-Derived Fuel on Downdraft Gasification", Energy Procedia, Vol. 79, pp. 528-535, 2015.

Leal, M.R.L.V., Horta Nogueira, L.A., Cortez, L.A.B., "Land demand for ethanol production", Applied Energy, Vol. 102, pp. 266-271, 2013.

Li, T., Zhang, J., Xie, X., Yin, X., An, X., "Montmorillonite-supported Ni nanoparticles for efficient hydrogen production from ethanol steam reforming", Fuel, Vol. 143, pp. 55-62, 2015.

Lin, Y., Ma, X., Peng, X., Yu, Z., Fang, S., Lin, Y., Fan, Y., "Combustion, pyrolysis and char CO2-gasification characteristics of hydrothermal carbonization solid fuel from municipal solid wastes", Fuel, Vol. 181, pp. 905-915, 2016.

Liu, B., Chia, Z.-W., Lee, Z.-Y., Cheng, C.-H., Lee, J.-Y., Liu, Z.-L., "The importance of water in the polyol synthesis of carbon supported platinum–tin oxide catalysts for ethanol electrooxidation", Journal of Power Sources, Vol. 206, pp. 97-102, 2012.

Luque, R., Speight, J.G., "1 - Gasification and synthetic liquid fuel production: an overview", Gasification for Synthetic Fuel Production. Woodhead Publishing, pp. 3-27, 2015.

Milone, C., Dhanagopal, M., Santangelo, S., Lanza, M., Galvagno, S., Messina, G., "K10 Montmorillonite Based Catalysts for the Growth of Multiwalled Carbon Nanotubes through Catalytic Chemical Vapor Deposition", Industrial & Engineering Chemistry Research, Vol. 49, pp. 3242-3249, 2010.

Minardi, E.R., Chakraborty, S., Curcio, S., "4 - Membrane reactors for dry reforming of methane", Membrane Reactors for Energy Applications and Basic Chemical Production. Woodhead Publishing, pp. 99-144, 2015.

Moriarty, P., Honnery, D., "Can renewable energy power the future?", Energy Policy, Vol. 93, pp. 3-7, 2016.

Mostafavi, E., Mahinpey, N., Rahman, M., Sedghkerdar, M.H., Gupta, R., "High-purity hydrogen production from ash-free coal by catalytic steam gasification integrated with dry-sorption CO2 capture", Fuel, Vol. 178, pp. 272-282, 2016.

Nowotny, J., Hoshino, T., Dodson, J., Atanacio, A.J., Ionescu, M., Peterson, V., Prince, K.E., Yamawaki, M., Bak, T., Sigmund, W., Veziroglu, T.N., Alim, M.A., "Towards sustainable energy. Generation of hydrogen fuel using nuclear energy", International Journal of Hydrogen Energy, In press, doi:10.1016/j.ijhydene.2016.05.054

O.Levenspiel, "chemical Reaction Engineering. Third edition". Wiley, 1999.

Oh, Y.-S., Roh, H.-S., Jun, K.-W., Baek, Y.-S., "A highly active catalyst, Ni/Ce–ZrO2/θ-Al2O3, for on-site H2 generation by steam methane reforming: pretreatment effect", International Journal of Hydrogen Energy, Vol. 28, pp. 1387-1392, 2003.

Perego, C., Villa, P., "The catalytic process from the laboratory to the industrial plant Catalyst preparation methods", Catalysis Today, Vol. 34, pp. 281-305, 1997.

Prabu, V., Geeta, K., "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems", Energy, Vol. 84, pp. 672-683, 2015.

Puga, A.V., "Photocatalytic production of hydrogen from biomass-derived feedstocks", Coordination Chemistry Reviews, Vol. 315, pp. 1-66, 2016.

R.A. van Santen, P.W.N.M.v.L.J.A.M., Averill, B.A., "Chapter 8 Catalytic reaction engineering", in: R.A. van Santen, P.W.N.M.v.L.J.A.M., Averill, B.A. (Eds.), Studies in Surface Science and Catalysis. Elsevier, pp. 375-431, 1999.

Ravi, S., Vadukumpully, S., "Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation", Journal of Environmental Chemical Engineering, Vol. 4, pp. 835-856, 2016.

Richardson, Y., Drobek, M., Julbe, A., Blin, J., Pinta, F., "Chapter 8 - Biomass Gasification to Produce Syngas A2 - Pandey, Ashok", in: Bhaskar, T., Stöcker, M., Sukumaran, R.K. (Eds.), Recent Advances in Thermo-Chemical Conversion of Biomass. Elsevier, Boston, pp. 213-250, 2015.

Rostrup Nielsen, J.R., Sehested, J., N?rskov, J.K., "Hydrogen and synthesis gas by steam- and CO2 reforming", Advances in Catalysis. Academic Press, pp. 65-139, 2002.

Takehira, K., Shishido, T., Wang, P., Kosaka, T., Takaki, K., "Steam reforming of CH4 over supported Ni catalysts prepared from a Mg-Al hydrotalcite-like anionic clay", Physical Chemistry Chemical Physics, Vol. 5, pp. 3801-3810, 2003.

Takeishi, K., Akaike, Y., "Hydrogen production by dimethyl ether steam reforming over copper alumina catalysts prepared using the sol–gel method", Applied Catalysis A: General, Vol. 510, pp. 20-26, 2016.

Thostenson, E.T., Ren, Z., Chou, T.-W., "Advances in the science and technology of carbon nanotubes and their composites: a review", Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.

Tonkovich, A.L.Y., Yang, B., Perry, S.T., Fitzgerald, S.P., Wang, Y., "From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer", Catalysis Today, Vol. 120, pp. 21-29, 2007.

Voldsund, M., Jordal, K., Anantharaman, R., "Hydrogen production with CO2 capture", International Journal of Hydrogen Energy, Vol. 41, pp. 4969-4992, 2016.

Wang, Z., Brouri, D., Casale, S., Delannoy, L., Louis, C., "Exploration of the preparation of Cu/TiO2 catalysts by deposition–precipitation with urea for selective hydrogenation of unsaturated hydrocarbons", Journal of Catalysis, Vol. 340, pp. 95-106, 2016.

Zhao X. , Jiang G., Li A., Li Y., "Technology, cost, a performance of waste-to-energy incineration industry in China", Renewable and Sustainable Energy Reviews, Vol. 55, pp. 115-130, 2016.

Xu, J., Chen, L., Tan, K.F., Borgna, A., Saeys, M., "Effect of boron on the stability of Ni catalysts during steam methane reforming", Journal of Catalysis, Vol. 261, pp. 158-165, 2009.

Yoo, J., Bang, Y., Han, S.J., Park, S., Song, J.H., Song, I.K., "Hydrogen production by tri-reforming of methane over nickel–alumina aerogel catalyst", Journal of Molecular Catalysis A: Chemical, Vol. 410, pp. 74-80, 2015.

Zhai, X., Ding, S., Liu, Z., Jin, Y., Cheng, Y., "Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity", International Journal of Hydrogen Energy, Vol. 36, pp. 482-489, 2011.

Zhuo, C., Levendis, Y.A., "Upcycling waste plastics into carbon nanomaterials: A review", Journal of Applied Polymer Science, Vol. 131, pp. 39931, 2014.

行政院環境保護署,"垃圾性質", http://210.69.101.110/epa/stmain.jsp?sys=100, 2015a.

行政院環境保護署,"廢物品及容器回收稽核認證量統計", http://210.69.101.110/epa/stmain.jsp?sys=100, 2015b.

徐麗茹,"Ni/SiO2殼核觸媒應用於催化模擬廢塑膠氣化之混合氣產氫", 國立國立中興大學環境工程學系研究所碩士論文,台中市,2015.

高銘志、蔡岳勳、翁敏航、宋書帆、陳建璋,"再生能源政策與法律概論"元照法學出版社,台北市,2013.

郭箴誠,"綠色新希望:再生能源"商鼎數位出版有限公司,台北市, 2012.

華健、吳怡萱,"再生能源概論"五南圖書出版股份有限公司,台北市,2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊