|
[1] K. S. Booth, J. H. Johnson, Dominating sets in chordal graphs, SIAM J. Comput. 11(1982), pp. 191{199. [2] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences 13(1976), pp. 335{379. [3] A. BrÄandstadt, V. Le, and J. P. Spinrad, Graph classes: A survey SIAM Mono- graphs on Discrete Mathematics and Applications, Philadelphia, 1999. [4] G. J. Chang, A. J. J. Kloks, J. Liu, and S.-L. Peng, The PIGs full monty|A °oor show of minimal separators, Proceedings STACS 2005 , LNCS 3404(2005), pp. 521{532. [5] M. S. Chang, E±cient algorithms for the domination problems on interval and circular-arc graphs, SIAM J. Comput., 27(1998), pp. 1671{1694. [6] M. Chudnovsky, P. Seymour, N. Robertson, and R. Thomas, The strong perfect graph theorem. Manuscript 2002. [7] E. J. Cockayne, O. Favaron, C. Payan, and A. Thomason, Contributins to the theory of domination, independence, and irredundance in graphs, Discrete Math. 33(1981), pp. 249{258. [8] D. G. Corneil and Y. Perl, Clustering and domination in perfect graphs, Discrete Application Mathmetics, 9(1984), pp27-39. [9] F.R. McMorris, C. Wang, and P. Zhang, On probe interval graphs, Discrete Applied Mathematics, vol.88, pp.315V324, 1998. [10] P. Damaschke, H. Muller, and D. Kratsch, Domination in convex and chordal bipartite graphs, Inform. Process. Lett., 36(1990), pp. 231-236. [11] M. Farber, Independent domination in chordal graphs, Operations Research Let- ters, 1(1982), pp. 134-138. [12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980. [13] M. C. Golumbic and A. N. Trenk, Tolerance graphs, Cambridge University Press 2003. [14] M. GrÄotschel, Characterizations of perfect graphs, Mathematical Programming Society Newsletter 62, 1999. [15] M. GrÄotschel, L. Lov¶asz, and A. Schrijver, The ellipsoid method and its con- sequences in combinatorial optimization, Combinatorica 1(1981), pp. 169{197. Corrigendum: Combinatorica 4(1984), pp. 291{295. [16] M. Haiko and B. Andreas, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs. Theor. Comput. Sci. 53(1987), pp. 257{265. [17] A. Hajnal, J. sur¶anyi, ÄUber die Au°Äosung von Graphen in vollstÄandige Teil- graphen, Ann. Univ. Sci. Budapest, EÄotvÄos. Math. 1(1958), pp. 113-121. [18] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (Eds.), Domination in graphs: Advanced Topics, Marcel Dekker, Inc., New-York, 1998. [19] R. B. Hayward, Weakly triangulated graphs, J. Combin. Theory B 39(1985), pp. 200{208. [20] R. B. Hayward, C. Ho¶ang, and F. Ma®ray, Optimizing weakly triangulated graphs, Graphs and Combinatorics 5(1990), pp. 33{35. [21] S. Hougardy, Inclusions between classes of perfect graphs. Preprint, Institut fÄur Informatik, Humboldt{UniversitÄat zu Berlin, (1998). [22] S. C. Hedetniemi and R. Laskar, eds., Topics on domination, Annals on Discrete Mathematics 48, North{Holland, Amsterdam 1991. [23] R. Irving, On approximating the minimum independent dominating set. Inform. Proc. Lett., 37(1991), pp. 197-200. [24] J. L. Johnson and J. Spinrad, A polynomial time recognition algorithm for probe interval graphs, Proceedings 12th ACM{SIAM Symposium on Discrete Algorithms (2001), pp. 477{486. [25] D. Kratsch, Domination and total domination in asteroidal triple-free graphs, Discrete Appl. Math. 99(2000), pp. 111{123. [26] R. M. McConnell and J. Spinrad, Construction of probe interval graphs, Proceed- ings 13th ACM{SIAM Symposium on Discrete Algorithms (2002), pp. 866{875. [27] F. R. McMorris, C. Wang, and P. Zhang, On probe interval graphs, Discrete Applied Mathematics 88(1998), pp. 315{324. [28] P. Zhang, Probe interval graph and its application to physical mapping of DNA. Manuscript 1994. [29] P. Zhang, E. A. Schon, S. G. Fisher, E. Cayanis, J. Weiss, S. Kistler, and P. E. Bourne, An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA, CABIOS 10(1994), pp. 309{317.
|