跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/01 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳碩卿
研究生(外文):Shuo-Ching Chen
論文名稱:仿生外骨骼下肢輔具機器人之設計
論文名稱(外文):A Design of Bionic Assistive Exoskeleton Robot for Human Lower Limb
指導教授:孫允平
指導教授(外文):Yun-Ping Sun
口試委員:孫允平黃立政蔡穎堅林威全
口試委員(外文):Yun-Ping SunLi-Jeng HuangYing-Chien TsaiWei-Chuan Lin
口試日期:2015-07-14
學位類別:碩士
校院名稱:正修科技大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:150
中文關鍵詞:仿生外骨骼機器人肌電圖圖形化設計平台迴歸模型下肢等長肌力實驗等張肌力實驗股四頭肌股二頭肌移動平均回授線性化感測器融合人機合作復健
外文關鍵詞:bionicexoskeleton robotelectromyographyEMGLabVIEWisometric exerciseisotonic exerciserectus femoris musclebiceps femoris musclelower limbmoving averageregression analysislinearization by feedbacksensor-fusionhuman-robot collaborationrehabilitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:762
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文完整呈現仿生外骨骼下肢輔具機器人的設計過程。根據肌電圖(electromyography)所代表的人類運動意圖作為回授訊號,並以氣動肌腱(pneumatic artificial muscles)作為致動器,發展出仿生外骨骼輔具機器人。首先,建立氣動肌腱實驗平台,整合慣性姿態儀(inertial motion tracker)、線性位移計(linear potentiometer)、負荷感測器(load sensor)與肌電訊號感測器(electromyography sensor),利用圖形化設計平台LabVIEW進行資料擷取與控制的程式開發,完成靜態與動態實驗,建立氣動肌腱的力量模型。其次,改良商用長腳支架為可裝配氣動肌腱之外骨骼輔具,建立氣動肌腱收縮量與輔具轉動角度間的迴歸模型(regression model)。然後,進行下肢等長肌力實驗(isometric exercise)與等張肌力實驗(isotonic exercise),得到在不同的負載之下的實驗數據,包括股四頭肌(rectus femoris)與股二頭肌(biceps femoris)的肌電訊號和膝關節角度,經過移動平均(moving average)得到平滑化的肌電訊號波形,透過迴歸分析得到下肢進行週期性伸展(extension)屈曲(flexion)運動時之肌電訊號與膝關節角度的迴歸模型。在控制器設計中,應用回授線性化(feedback linearization)處理來自於重力的非線性項,得到一個線性化的系統,設計比例增益控制器配合慣性感測器作為動態迴路補償,再結合反應膝關節角度運動意圖的肌電訊號,成為具有感測器融合(sensor-fusion)的智慧型控制系統,最後,在一具原型的仿生外骨骼下肢輔具機器人進行一系列人機合作(human-robot collaboration)實驗,結果顯示可以達到協助復健運動之目的。
This thesis presents a design process of a bionic assistive exoskeleton robot for the human lower limb. We use electromyography (EMG) as a biological feedback signal to reflect the movement intention from human body, and adopt pneumatic artificial muscles (air muscle) as actuators to develop a bionic assistive exoskeleton robot. First, a workbench for air muscles testing is built. The hardware in the workbench includes inertial motion tracker, linear potentiometer, load sensor, and electromyography sensor. The graphical design system LabVIEW is used to efficiently develop the programs for data acquisition and control. The force models of air muscle are derived from analysis of static and dynamic experiments in the workbench. Second, a commercially available long leg brace is reformed to configure the air muscles and becomes a powered exoskeleton. The contraction displacement can be approximately expressed by the pitch angle of exoskeleton. Third, a subject is asked to perform isometric exercise and isotonic exercise of lower limb under different load conditions. The EMG of rectus femoris and biceps femoris muscles and the resulting knee joint angle data are simultaneously recorded. After moving average smoothing of raw EMG data, the profile of EMG is obtained. From regression analysis, the angular movement of lower limb can be approached by a fifth-degree polynomial model of the smoothing EMG data. Finally, linearization by feedback is accomplished by subtracting the nonlinear gravity term from the equation of motion and adding it to the control. The result is a linear system that enables us to design a proportional-integral (PI) controller by linear system analysis to compensate the tracking error according to inertial sensor feedback. In addition, the control system incorporates the EMG signal as a biological feedback to represent the movement intention. That leads to an intelligent control system with sensor-fusion. Finally, a prototype of bionic exoskeleton assistive robot for lower limb is completed and evaluated by a lot of human-robot collaboration experiments. The results indicate that the bionic-inspired exskeleton assists persons to execute rehabilitation exercises effectively.
目錄
中文摘要................................i
英文摘要................................iii
誌謝....................................v
目錄....................................vi
表目錄..................................ix
圖目錄..................................x
第1章 緒論..............................1
1-1研究動機.............................1
1-2文獻回顧.............................2
1-3研究目的與方法.......................4
1-4論文架構.............................6
第2章 實驗軟硬體設備與輔具改良............7
2-1程式語言LabVIEW......................7
2-2無線慣性姿態儀........................8
2-3無線肌電感測系統......................9
2-4氣動肌腱實驗平台......................9
2-4-1感測器.............................10
2-4-2資料擷取單元.......................11
2-4-3控制器.............................11
2-4-4受控體.............................12
2-5個人電腦(PC)監控端....................12
2-6仿生外骨骼輔具........................13
第3章 肌電訊號實驗與動作識別..............15
3-1下肢等長與等張肌力實驗.................15
3-2肌電訊號的平滑化與正規化處理...........17
3-3動作意圖識別分析與模型建立.............18
第4章 氣動肌腱的建模與控制實驗............20
4-1氣動肌腱特性分析與建立模型.............20
4-1-1靜態實驗過程與結果..................21
4-1-2動態實驗過程與結果..................22
4-2氣動肌腱位置控制的設計模擬與驗證.......26
4-2-1 PID控制器程式設計..................26
4-2-2 PID控制器設計及步階輸入實驗.........28
4-2-3 正弦輸入實驗.......................30
第5章 仿生外骨骼輔具結合肌電訊號的控制.....32
5-1外骨骼輔具的正弦位置控制...............32
5-2由肌電訊號遠端輔具控制.................37
5-3穿戴輔具進行人機協同控制...............38
第6章 結論與未來建議.....................42
6-1 結論................................42
6-2 未來建議............................43
參考文獻................................45
[1] Darwin G. Caldwell, Gustavo A. Medrano-Cerda, and Mike Goodwin, “Control of Pneumatic Muscle,” IEEE Control Systems, vol.15, no.1, pp. 40-48., 1995.
[2] E. Kelasidi, G. Andrikopoulos, G. Nikolakopoulos, S. Manesis, “A survey on pneumatic muscle actuators modeling,” 2011 IEEE International Symposium on Industrial Electronics,
pp. 1263-1269., 2011.
[3] Bertrand Tondu and Pierre Lopez, “Modeling and control of McKibben artificial muscle robot actuators,” IEEE Control Systems, vol.20 no.2, pp. 15-38., 2000.
[4] J. Sarosi, “New approximation algorithm for the force of Fluidic Muscles,” IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), pp.229-
233., 2012.
[5] Marcel More and Ondrej Liska, “Comparison of different methods for pneumatic artificial muscle control,” IEEE 11th International Symposium on Applied Machine Intelligence and
Informatics (SAMI), pp. 117-120., 2013.
[6] Y. L. Park, J. Santos, K. G. Galloway, et al. “A Soft Wearable Robotic Device for Active Knee Motions using Flat Pneumatic Artificial Muscles,” IEEE International Conference
on Robotics and Automation (ICRA), pp. 4805-4810., 2014.
[7] R. Merletti, and P. A. Parker, (Editors), Electromyography: physiology, engineering, and noninvasive applications, IEEE Press., 2004.
[8] P. Konrad, The ABC of EMG, Noraxon INC., Version 1.0., 2005.
[9] D. A. Neumann, Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation, 2nd Ed., Elsevier, 2010.
[10] Y.-P. Sun, K.-T. Yen, Y.-C. Liang, L.-N. Wu, K.-C. Lu, “An EMG-Driven Model to Estimate Knee Joint Moment,” Life Science Journal, Vol. 10, No. 2, pp. 249-253., 2013.
[11] J. L. Pons, “Rehabilitation Exoskeletal Robotics,” IEEE Engineering in Medicine and Biology Magazine, vol.29 no.3, pp. 59-63., 2010.
[12] K. S. Aschenbeck, N. I. Kern, R. J. Bachmann, R. D. Quinn, “Design of a Quadruped Robot Driven by Air Muscles,” The First IEEE/RAS-EMBS International Conference on
Biomedical Robotics and Biomechatronics, pp. 875-880., 2006.
[13] R. Niiyama, A. Nagakubo, Y. Kuniyoshi, “Mowgli: A bipedal jumping and landing robot with an artificial musculoskeletal system,” IEEE International Conference on Robotics and
Automation. Roma, Italy, pp. 2546-2551., 2007.
[14] N. Vitiello, T. Lenzi, S. M. M. De Rossi et al., “A sensorless torque control for antagonistic driven compliant joints,” Mechatronics, vol. 20, no. 3, pp. 355–367., 2010.
[15] K. Kiguchi, K. lwami, M. Yasuda, K. Watanabe, T. Fukuda, “An Exoskeletal Robot for Human Shoulder Joint Motion Assist,” IEEE/ASME Trans. on Mechatronics, vol.8, no.1,
pp.125-135., 2003.
[16] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, “Proportional EMG Control for Upper-Limb Powered Exoskeletons,” Annual International Conference of the IEEE
Eng. Med. Biol. Soc. Conf., pp. 628–631., 2011.
[17] H. Sun, L. Zhang, X. Hu, L. Tian, “Experiment Study of Fuzzy Impedance Control on Horizontal Lower Limbs Rehabilitation Robot,” IEEE International Conference on Electronics,
Communications and Control (ICECC), pp. 2640-2643., 2011.
[18] N. Vitiello, T. Lenzi, S. Roccella, et al., “NEUROExos A Powered Elbow Exoskeleton for physical rehabilitation,” IEEE Transactions on Robotics, vol. 29, no. 1, pp.220-235.,
2012.
[19] G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, 4th Ed., Prentice Hall, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊