|
[1]Arivazhagan, S., & Ganesan, L. (2003). Texture classification using wavelet transform. Pattern Recognition Letters, 24, 1513-1521. [2]Armato, S.G., McLennan, G., McNitt-Gray, M.F., Meyer, C.R., Yankelevitz, D., & Aberle, D.R., …Clarke, L.P. (2004). Lung image database consortium developing a resource for the medical imaging research community. Radiology, 232, 739-748. [3]Avci, E. (2007). An expert system based on Wavelet Neural Network-Adaptive Norm Entropy for scale invariant texture classification. Expert Systems with Applications, 32, 919-926. [4]Avci, E. (2008). Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system. Applied Soft Computing, 8, 225-231. [5]Avci, E., Turkoglu, I., & Poyraz, M. (2005a). A new approach based on scalogram for automatic target recognition with X-band Doppler radar. Asian Journal of Information Technology, 4, 133-140. [6]Avci, E., Turkoglu, I., & Poyraz, M. (2005b). Intelligent target recognition based on wavelet packet neural network. Expert Systems With Applications, 29, 175-182. [7]Bae, K.T., Kim, J.S., Na, Y.H., Kim, K.G., & Kim, J.H. (2005). Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists detection performance. Radiology, 236, 286-293 [8]Chung, K.L., Yang W.N., Huang, Y.H., Wu, S.T., & Hsu, Y.C. (2007). On SVD-based watermarking algorithm. Applied Mathematics and Computation, 188, 54-57. [9]Dehmeshki, J., Ye, X., Lin, X.Y., Valdivieso, M., & Amin, H. (2007). Automated detection of lung nodules in CT images using shape-based genetic algorithm. Computerized Medical Imaging and Graphics, 31, 408-417. [10]Gonzalez, R.C., & Woods, R.E. Digital Image Processing [Second Edition]. Englewood Cliffs, NJ: Prentice-Hall. [11]Grzymala-Busse, J.W. (1997). A new version of the rule induction system LERS. Fundamenta Informaticae, 31, 27-39. [12]Helen, H., Jeongjin, L., & Yeny, Y. (2008). Automatic lung nodule matching on sequential CT images. Computers in Biology and Medicine, 38, 623-634. [13]Huang, K., & Aviyente, S. (2006). Information-theoretic wavelet packet subband selection for texture classification. Signal Processing, 86, 1410-1420. [14]Kubo, M., Yamamoto, T., Kawata, Y., Niki, N., Eguchi, K., Ohmatsu, H., …Nishiyama, H. (2001). CAD system for the assistance of comparative reading for lung cancer using retrospective helical CT images, 4322, 1788-1795. [15]Lee, S.L.A., Kouzani, A.Z., & Hu, E.J. (2010). Random forest based lung nodule classification aided by clustering. Computerized Medical Imaging and Graphics, 34, 535-542. [16]Mallat, S. (1999). A Wavelet Tour of Signal Processing, Academic Press. New York: Academic Press. [17]Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions Pattern Analysis and Machine Intelligence, 14, 710-732. [18]Messay, T., Hardie, R.C., & Rogers S.K. (2010). A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Medical Image Analysis, 14, 390-406. [19]Mullaly, W., Betke, M., Hong, H., Wang, J., Mann, K., & Ko, J.P. (2002). Multi-criterion 3D segmentation and registration of pulmonary nodules on CT: a preliminary investigation. Proceedings of the International Conference on Diagnostic Imaging and Analysis (ICDIA), 176-181. [20]Muneeswaran, K., Ganesan, L., Arumugam, S., & Soundar, K.R. (2005). Texture classification with combined rotation and scale invariant wavelet features. Pattern Recognition, 38, 1495-1506. [21]Pawlak, Z. (1982). Rough sets. International Journal of Computational Information Science, 341-356. [22]Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data. Dordrecht: Kluwer. [23]Pawlak, Z., & Skowron, A. (2007). Rudiments of rough sets. Information Sciences, 177, 3-27. [24]Sousa, J.R., Silva, A.C., de Paiva, A.C., & Nunes, R.A. (2010). Methodology for automatic detection of lung nodules in computerized tomography images. Computer Methods and Programs in Biomedicine, 98, 1-14. [25]Takizawa, H., Yamamoto, S., & Shiina, T. (2007). Accuracy improvement of pulmonary nodule detection based on spatial statistical analysis of thoracic CT scans. IEICE transactions on Information and Systems, E90-D, 1168-1174. [26]Vozalis, M.G., & Margaritis, K.G. (2007). Using SVD and demographic data for the enhancement of generalized Collaborative Filtering. Information sciences, 177, 3017-3037. [27]Yeny, Y., & Helen, H. (2008). Correction of segmented lung boundary for inclusion of pleural nodules and pulmonary vessels in chest CT images. Computers in Biology and Medicine, 38, 845-857. [28]http://www.mathworks.com/matlabcentral/fileexchange/19084
|