跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/03 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊浚釗
研究生(外文):Chun-Chao Chuang
論文名稱:溶磷菌在臺灣北部土壤中之分佈及應用
論文名稱(外文):Distribution and application of phosphate-solubilizing microorganisms in soils of northern Taiwan
指導教授:陳仁炫陳仁炫引用關係
指導教授(外文):Jen-Hshuan Chen
學位類別:博士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:165
中文關鍵詞:溶磷菌有機農耕法慣行農耕法磷礦石粉堆肥小白菜甘藍
外文關鍵詞:Phosphate-solubilizing microorganismOrganic farmingConventional farmingRock phosphateCompostBrassica campestris L. ssp. chinensis L. MakinoBrassica oleracea L. var. capitata L.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
國內環境生態保育漸受重視,而有機農耕法也蔚為風氣,如能將有機廢棄物堆肥化回歸農地,不僅可解決污染等問題,增加作物養分吸收及產量。本研究係為探討臺灣北部地區有機及慣行農耕法對土壤微生物族群動態及肥力之影響,由根圈土壤篩選出溶磷能力強的菌株,找出其最佳接種方式,並配合堆肥及磷礦石粉的施用,以瞭解其對葉菜類小白菜及甘藍生育及養分吸收效應,以提高北部地區酸性土壤磷肥之利用率。
結果顯示,有機農耕法之土壤生質氮與微生物菌數較慣行農耕法高2~3倍,蔬菜園較水稻田高2~5倍。根圈土壤生質氮與微生物菌數為非根圈土壤6~20倍,其中有機農耕法根圈土壤溶鈣磷細菌數較非根圈土壤約高4倍,溶鐵磷細菌約高8倍,其餘溶鈣磷真菌及溶鐵磷真菌數則分別高約7倍及10倍。慣行農耕法根圈土壤溶鈣磷細菌數較非根圈土壤約高5倍,溶鐵磷細菌約高15倍,其餘溶鈣磷真菌及溶鐵磷真菌數則分別高約9倍及6倍。
調查期間由作物根圈土壤中篩選溶磷能力強的菌株共計12株(細菌10株,真菌2株),其中 Pseudomonas spinosa strain TY6 於小白菜移植後根部灌注菌株原液10 mL及 Aspergillus sp. SU4於穴盤育苗時每穴格介質接種菌株原液10 mL對小白菜生育及養分吸收為最佳。對葉菜類小白菜移植盆栽時,於植株根部接種溶磷細菌Pseudomonas spinosa strain TY6 菌液10 mL,並配合施用堆肥 15 g pot-1,小白菜生育及養分吸收量較不接種者,植株鮮重增加 6 g plant-1,乾重增加 0.22 g plant-1,氮、磷吸收量則分別增加 17 mg plant-1 及 0.8 mg plant-1;而接種溶磷真菌 Aspergillus sp. SU4 菌液10 mL,小白菜生育及養分吸收量較不接種者,植株鮮重增加 1 g plant-1,乾重增加 0.02 g plant-1,磷吸收量則增加 1.2 mg plant-1。
田間試驗種植甘藍於移植田區時植株根部接種 Pseudomonas spinosa strain TY6 菌液10 mL,並配合施用堆肥 10 t ha-1,移植後1個月需進行2次接種 Pseudomonas spinosa strain TY6 菌液10 mL,甘藍生育及養分吸收量較不接種者比較,產量增加 4.8 t ha-1,亁重增加 0.43 t ha-1,氮、磷及鉀吸收量則分別增加 5 kg ha-1、1.09 kg ha-1及 13 kg ha-1,且處理間均達5%顯著差異。
Organic farming system has become more popular in Taiwan nowadays. In case that compost can be used in the farm soil, it could not only solve the pollution problem of agricultural wastes but also increase the soil fertility favorable for the crop production as well as for the multiplication of soil microorganisms. The purpose of this study was to evaluate the effect of organic and conventional farming on the population dynamics of soil microorganisms and soil fertility. Soil microorganisms with strongest phosphate-solubilizing capacity were isolated and their inoculation methods were also developed in this study. In order to determine the effect of phosphate-solubilizing microorganisms on the growth and nutrients uptake of Pai-tsai (Brassica campestris L. ssp. chinensis (L.) Makino) and cabbage (Brassica oleracea L. var. capitata L.), the rock phosphate and compost were applied in the field during inoculation of the soil microorganisms.
The result showed the biomass nitrogen and microorganism population in organic farming soil were 2~3 times higher than those in conventional farming soil. However, the biomass nitrogen and microorganism population in vegetable field were 2~5 times higher than those in rice field. The population of microorganisms in rhizosphere soil was 6~20 times higher than those in non-rhizosphere soil. And the population of Ca-PSB, Fe-PSB, Ca-PSF and Fe-PSF microorganisms in organic farming rhizosphere soil was 4, 8, 7, and 10 times, respectively, as compared to those in non-rhizosphere soil. However, the population of Ca-PSB, Fe-PSB, Ca-PSF and Fe-PSF microorganisms in conventional farming rhizosphere soil was 5, 15, 9, and 6 times, respectively, as compared to those in non-rhizosphere soil.
A total of 12 isolates performed strong phosphate-solubilizing capacity, 10 and 2 of them were bacteria and fungi, respectively. Drenching 10 ml plant-1 Pseudomonas spinosa strain TY6 suspension into the root zone of Pai-tsai after transplant, and drenching 10 ml tray-1 Aspergillus sp. SU4 suspension into root of Pai-tsai seeding were suitable inoculation method for the growth and nutrient uptake of Pai-tsai. Experimental results showed that Pai-tsai applying 15 g pot-1 compost and inoculated with 10 ml plant-1 Pseudomonas spinosa strain TY6 suspension increased fresh weights 6 g plant-1, dried weights 0.22 g plant-1, nitrogen uptake 17 mg plant-1 and phosphorous uptake 0.8 mg plant-1, respectively, as compared to non-inoculation treatments. Inoculating with 10 ml plant-1 Aspergillus sp. SU4 suspension could increase fresh weights 1 g plant-1, dried weights 0.02 g plant-1, phosphorous uptake 1.2 mg plant-1, respectively, as compared to non-inoculation treatments.
In the study inoculation of 10 ml plant-1 Pseudomonas spinosa strain TY6 suspension into the root zone with the application of 10 t ha-1 composts for cabbage after transplant one month later. Showed that could give the best treatment, which increased the yield of cabbage 4.8 t ha-1, dry weights 0.43 t ha-1, nitrogen uptake 5 kg ha-1, phosphorus uptake 1.09 kg ha-1 and potassium uptake 13 kg ha-1, respectively, as compared to non-inoculation. And it has 5% significantly different among the treatments.
目錄

中文摘要------------------------------------------------------------------------------I
英文摘要----------------------------------------------------------------------------III
目錄 ----------------------------------------------------------------------------------V
表次--------------------------------------------------------------------------------VIII
圖次----------------------------------------------------------------------------------IX
附表----------------------------------------------------------------------------------XI
第一章、 緒言-----------------------------------------------------------------------1
第二章、 前人研究-----------------------------------------------------------------3
一、土壤磷的重要性及特性----------------------------------------------------3
二、溶磷微生物的種類---------------------------------------------------------4
三、溶磷機制的探討-------------------------------------------------------------6
四、影響溶磷菌溶磷功能及族群數的因子----------------------------------8
五、溶磷微生物的應用--------------------------------------------------------10
第三章、臺灣北部地區有機農耕法與慣行農法土壤微生物與土壤性質之調查----------------------------------------------------------------------13
一、材料與方法----------------------------------------------------------------13
(一)土壤採集-----------------------------------------------------------------13
(二)土壤微生物菌數測定--------------------------------------------------14
(三)土壤性質測定-----------------------------------------------------------14
(四)統計分析-----------------------------------------------------------------15
二、結果與討論 ---------------------------------------------------------------19
(一)有機農耕法與慣行農法對土壤生質氮量與微生物菌數之影響----------------------------------------------------------------------------19
(二)根圈與非根圈土壤生質氮量與微生物菌數之比較--------------21
(三)有機農耕法與慣行農法對土壤肥力之影響-----------------------23
(四)不同土類對土壤微生物菌數及肥力之影響-----------------------25
三、結論--------------------------------------------------------------------------27
第四章、 接種溶磷菌對小白菜生育與氮和磷吸收量之影響------------28
一、材料與方法-----------------------------------------------------------------28
(一)菌株採樣、篩選、鑑定及特性---------------------------------------28
(二)供試土壤、試驗處理及盆栽作物------------------------------------28
(三)菌株培養、採樣及分析------------------------------------------------30
(四)統計分析及繪圖 -------------------------------------------------------32
二、結果與討論-----------------------------------------------------------------32
(一)供試菌株純化、鑑定及溶磷能力-----------------------------------32
(二)小白菜收穫期之根圈溶磷菌數之變化 ----------------------------34
(三)接種溶磷菌對小白菜產量、乾重及氮、磷吸收量之影響------37
三、結論--------------------------------------------------------------------------52
第五章、溶磷菌不同接種方式及菌液量對小白菜生育與氮和磷吸收
之影響-----------------------------------------------------------------53
一 、溶磷菌不同接種方式對小白菜生育與氮和磷吸收量之影響----53
(一)材料與方法- -------------------------------------------------------------53
1.供試土壤、試驗處理- ---------------------- ---------------------------53
2.供試菌株與接種法-----------------------------------------------------54
3.採樣與分析-- -----------------------------------------------------------54
4.溶磷菌於鈣磷液體培養基培養三天培養液pH及可溶性磷濃度 之測定- ------------------------------------------------------------------54
5.統計分析及繪圖- ------------------------------------------------------54
(二)結果與討論--------------------------------------------------------------54
1.供試溶磷菌於鈣磷液體培養基培養三天培養液pH及可溶性 磷濃度之變化 ----------------------------------------------------------54
2.溶磷菌不同接種方式對小白菜根圈溶磷菌數之變化 ---------57
3.溶磷菌不同接種方式對小白菜鮮重和乾重之影響 ------------59
4.溶磷菌不同接種方式對小白菜氮和磷吸收量之影響- ---------62
(三)結論-----------------------------------------------------------------------66
二、溶磷菌液不同接種量對白菜生育與氮和磷吸收量之影響-------67
(一)材料與方法--------------------------------------------------------------67
1.供試土壤、試驗處理--------------------------------------------------67
2.供試菌株與接種法- ---------------------------------------------------67
3.採樣與分析- ------------------------------------------------------------67
4.統計分析及繪圖- ------------------------------------------------------67
(二)結果與討論--------------------------------------------------------------68
1.溶磷菌液不同接種量對小白菜根圈溶磷菌數之變化- ---------68
2.溶磷菌液不同接種量對小白菜產量和乾重之影響 ------------70
3.溶磷菌不同接種量對小白菜氮和磷吸收量之影響-------------73
(三)結論----------------------------------------------------------------------76
第六章、 接種溶磷菌與不同堆肥對白菜生育及氮和磷吸收量之影響
--------------------------------------------------------------------------77
一、材料與方法 --------------------------------------------------------------77
(一)供試土壤與試驗處理 ------------------------------------------------77
(二)供試菌株與接種法 ---------------------------------------------------78
(三)採樣與分析 ------------------------------------------------------------78
(四)統計分析及繪圖 ------------------------------------------------------78
二、結果與討論 --------------------------------------------------------------79
(一)接種溶磷菌與不同堆肥對小白菜收穫期之根圈溶磷菌數之變 化-------------------------------------------------------------------------79
(二)接種溶磷菌與不同堆肥對小白菜鮮重和乾重之影響----------82
(三)接種溶磷菌與不同堆肥對小白菜氮和磷吸收量之影響 ------86
(四)接種溶磷菌與不同堆肥對土壤肥力之影響 ---------------------90
三、結論 -----------------------------------------------------------------------95
第七章、 接種溶磷菌對甘藍生育與養分吸收之影響--------------------96
一、材料與方法 --------------------------------------------------------------96
(一)供試土壤、試驗處理 ------------------------------------------------96
(二)供試菌株與接種法 ---------------------------------------------------96
(三)採樣與分析 ------------------------------------------------------------97
(四)統計分析及繪圖-------------------------------------------------------97
二、結果與討論 --------------------------------------------------------------97
(一)不同處理對甘藍收穫期之根圈溶磷菌數之變化 ---------------97
(二)不同處理對甘藍生育、產量和乾重之影響 ---------------------98
(三)不同處理對甘藍養分吸收之影響---------------------------------103
(四)不同處理對土壤肥力之影響---------------------------------------107
三、結論-----------------------------------------------------------------------115
參考文獻 -----------------------------------------------------------------------116
附表 -----------------------------------------------------------------------------131
參考文獻

1.王新傳。1981。鮑氏土壤機械分析法。作物營養診斷技術。臺灣省農業試驗所特刊13:27-29。
2.王西華。1989。農業廢棄物在有機農業之利用。有機農業研討會專輯。Pp.217-222。行政院農業委員會臺中區農業改良場。臺中。臺灣。
3.王銀波、黃山內、趙震慶。1996。有機農耕法作物養分吸收與殘留之評估。中華農學會報 新173:103-119。
4.王斐能、蘇育萩、鐘仁賜。2001。不同堆肥對紅壤生長青梗白菜養分吸收的影響。土壤與環境 4: 183-192。
5.行政院農業委員會農糧署。2005。作物施肥手冊。第六版。南投。臺灣。
6.行政院農業委員會農糧署。2004。農業統計年報 p206。
7.江晃榮。1993。農業生物技術。p.333-338。華香園出版社印行。臺北。臺灣。
8.江婉祺。1994。囊叢枝內生菌根菌對矮牽牛與百合生長開花之影響。國立臺灣大學園藝所碩士論文p.91。
9.何振立。1997。土壤微生物量及其再養分循環和環境評估中的意義。土壤 29 (2) : 61-69。
10.吳繼光、林素禎。1998。囊叢枝內生菌根菌與農藥施用的互動關係。囊叢枝內生菌根菌應用技術手冊。P.131-138。臺灣省農業試驗所。
11.林良平。1987。土壤微生物學。南山堂出版社。
12.林秋裕。1995。環境工程微生物學。國璋出版社。p.75-93。
13.林毓雯、王鍾和。2002。不同有機資材之分解與氮素礦化。作物有機栽培102 : 105-116。臺灣省農業試驗所。
14.林靜宜。2004。荖濃溪流域之土壤微生物相調查。國立中山大學生物科學研究所碩士論文。
15.卓昕岑。2002。高海拔塔塔加及低海拔福山森林土壤微生物族群研究。國立臺灣大學農業化學研究所碩士論文。
16.洪崑煌。1995。有機物對作物生產的功能。堆肥合理化施肥技術研討會專刊。pp.59-71。臺中。臺灣。
17.徐琳媛。2001。資材之添加對強酸性土壤肥力的改良效應。國立中興大學土壤環境研究所碩士論文。
18.張鳳屏。1991。茶園土壤中囊叢枝菌根菌與溶磷細菌之調查及應用。國立中興大學土壤學研究所碩士論文。
19.張鳳屏、楊秋忠。1992。囊叢枝菌根菌與溶磷細菌對塑膠袋茶樹扦插苗生長之影響。臺灣茶業研究彙報11 : 79-89。
20.張鳳屏、楊秋忠。1994。茶園土壤中溶磷細菌生態調查及其應用。微生物肥料之開發與利用研討會專刊。臺灣省農業試驗所特刊第44號115-129。
21.張碧芬、趙維良。1994。微生物與環境污染。環保科技通訊p11-15。
22.陳春泉。1976。桃園縣土壤調查報告。臺灣省農業試驗所報告第33號。
23.陳春泉。1977。新竹、苗栗縣土壤調查報告。臺灣省農業試驗所報告第34號。
24.陳春泉。1978。臺北、宜蘭縣土壤調查報告。臺灣省農業試驗所報告第35號。
25.陳仁炫。1993。鹽害土壤的問題及其改良對策。農藥世界116:p. 71-87。
26.陳仁炫、丁美幸。1993。土壤pH及磷肥施用對酸性和石灰質土磷生物有效性的影響。中國農業化學會誌 31:653-666。
27.陳仁炫。1995。有機質肥料的添加對土壤磷有效性及礦化作用之影響。中國農業化學會誌 33:533-549。
28.陳仁炫、吳振記。1999。增進土壤生產力策略下林收支循環探討。中國農業化學會誌 37:221-231。
29.陳仁炫、王怡雯。1999。石灰的施用對強酸性土壤鉀固定及鉀有效性的影響。土壤與環境2:333-346。
30.陳仁炫、謝國研。2003。施用有機質才對玉米-水稻輪作制度下之土壤鉀狀態的效應。臺灣農業化學與食品科學 41:1-9。
31.郭魁士。1983。土壤學。P.289。
32.彭德昌。2000。微生物接種對無子西瓜生育與鮮重之影響。花蓮區農業改良場研究彙報18:61-66。
33.郭玉霖。2003。真菌溶磷機制的探討及菌株對玉米生長之影響。私立東吳大學碩士論文。
34.曾證諺、陳仁炫。2004。禽畜糞堆肥施用再強酸性土壤之肥培策略評估。土壤與環境7:77-89。
35.黃祥慶、蔡宜峰。1991。不同豬糞用量及施用時期對甘藍之影響。臺中區農業改良場研究彙報30:23-32。
36.黃譯賢。1999。高磷堆肥之製作及其在強酸性土壤改良上之應用與評估。國立中興大學土壤環境科學系碩士論文。
37.詹朝清、張建生。1999。有機質肥料對甘藍生育之影響。花蓮區農業改良場研究彙報17:81-91。
38.莊作權、楊明富。1992。水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力之影響。中國農業化學會誌 30:553-568.
39.楊盛行、賴朝明、孫瓏月、羅陽青、范曉雲、楊鈞凱、魏嘉碧。1998。塔塔加高山土壤微生物生態。中國農業化學會誌36:229-238。
40.趙震慶、蘇楠榮、王銀波。1996。有機農耕法之土壤肥力的變遷。中華農學會報 新173:85-102。
41.趙震慶、趙維良、楊秋忠。2004。不同農業生態系土壤中微生物生質量與脫氮作用。中華農學會報 5 (5):401-415。
42.劉瑞美、楊秋忠。2002。接種溶磷根瘤菌對作物生長及養分吸收之影響。土壤與環境5:153-164。
43.歐淑真。2003。評估四種有機質材在不同性質土壤的氮與磷之釋出效應。國立中興大學土壤環境科學系碩士論文。
44.蔡宜峰、陳清文。1992。施用牛糞堆肥對一般作物及土壤特性之影響。臺中區農業改良場研究彙報 40:9-16。
45.蔡宜峰。1999。雞糞堆肥及牛糞堆肥對甘藍鮮重及土壤肥力之影響。臺中區農業改良場研究彙報 63:13-24。
46.蔡宜峰。2001。雞糞堆肥及牛糞堆肥對甘藍養分吸收之影響。臺中區農業改良場研究彙報 70:37-49。
47.賴文龍、蔡宜峰。2004。溶磷菌及磷肥施用量對茄子生長效益之研究。臺中區農業改良場研究彙報 81:19-27。
48.鍾仁賜、葉美雲、張則周。1994。酸性土壤鍾施用有機物對作物生長之影響及鋁錳之解毒作用。臺灣東部問題土壤改良研討會論文集pp.179-197。花蓮。臺灣。
49.鍾仁賜、翁弘明。1998。有機質肥料對蔬菜生長及氮成分與土壤肥力之影響。農產廢棄物在有機農業之應用研討會p.136-164。
50.簡宣裕。1998。開發有益微生物及添加于有機質肥料效益評估之研究。國立中興大學土壤環境科學系博士論文。
51.Alagawadi, A. R. and A. C. Gaur. 1988. Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant and Soil 105:241-246.
52.Alexander, M. 1977. Nitrogen fixation : Symbiotic. In M. Alexander (ed.). Introduction to Soil Microbiology. p. 305-330. John Wiley&Sons. New York.
53.Alikhani, H. A., N. Saleh-Rastin, and H. Antoum. 2006. Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil. 287:35-41.
54.Alvey, S. C. H., Y. A. Buerkert, and D. E. Crowley. 2003. Cereal/legume rotaion effects on rhizosphere bacterial community structure in west African soils. Biol Fertil Soils.37:73-82.
55.Anderson, J. P. E. and K. H. Domsch. 1980. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science. 130:211-216.
56.Angel, V., A. Burgos., T. Fiscella., R. Rivas., E. Velazquez., C. Rodriguez-Barrueco., E. Cervantes., M. Chamber, and I. Jose-Mariano. 2006. Different effects of coinoculations with Pseudomonas jessenii PS06(a phosphate-solubilizing bacteria) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under growth and field conditions. Plant and Soil. 287:43-50.
57.Anjos, I. J. and D. L. Rowell. 1987. The effect of lime on phosphorus adsorption and barley growth in three acid soils. Plant Soil. 103:75-83.
58.Asea, P. E. A., R. M. N. Kuecy, and J. W. B. Stewart. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. & Biochem. 20: 459-464.
59.Bajpai, P. D. and W. V. B. Sundara Rao. 1971a. Phosphate solubilizing bacteria. Part Ⅱ. Extracellular production of organic acids by selected bacteria solubilizing insoluble phosphate. Soil Sci. Plant Nutr.17: 44-45.
60.Bajpai, P. D. and W. V. B. Sundara Rao. 1971b. Phosphate solubilizing bacteria. PartⅢ. Soil inoculation with phosphorus solubilizing bacteria. Soil Sci. Plant Nutr.17: 46-53.
61.Banik, S. and B. K. Dey. 1982. Available phosphate content of alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganism. Plant Soil 69:353-364.
62.Bar-Yosef. B., R. D. Rogers., J. H. Wolfram, and E. Richman. 1999. Pseudomonas cepacia - mediated rock phosphate solubilizing in Korea and montmorillonite supensions. Soil. Sci. Am. J. 63:1703-1708.
63.Bolan, N. S., and N. J. Barrow. 1984. Modelling the effect of adsorption of phosphate and other anions on the surface charge of variable charge oxides. J. Soil Sci. 36:187-196.
64.Bolan, N. S., R. Naidu, S. Mahimairaja, and S. Basjaran. 1994. Influence of low-molecullar-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils. 18:311-319.
65.Borggaard, O. K. 1983. Influence of iron oxides on phosphate adsorption by soil. J. Soil Sci. 40:415-425.
66.Bremner, J. M. and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjldahl Method to include nitrate and nitrite. In “Methods of Soil analysis Part 2 Chemical and Microbiological Properties”, A. L. Page (ed.), 2nd ed., pp. 621-622, Academic Press, New York.
67.Campbell, R. 1989. Organic amendment. p.127-130. In: Campbell, R. (ed.). Biological Control of Microbial Plant Pathogens. Cambridge University press. USA.
68.Castellanos, J. Z. and P. F. Pratt. 1981. Mineralization of manure nitrogen-correlation with laboratory indexes. Soil Sci. Soc. Am. J. 45:354-357.
69.Cattelan, A. J., P. G. Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670-1680.
70.Chae, Y. M. and M. A. Tabatabai. 1986. Mineralization of nitrogen in soils amended with organic wastes. J. Environ. Qual. 15:193-198.
71.Chang, C., T. G. Sommerfelt, and T. Entz. 1993. Barely performance under heavey application of cattle feedlot manure. Agron. J. 85:1013-1018.
72.Chhonka, P. K. 1979. Soil microorganisms in relation to availability of soil phosphorus to plants. In: Phosphorus in soils, crops and fertilizers. Bull. No.12 Indian Society of Soil Science, New Delhi.
73.Chien, S. H. 1979. Dissolution of phosphate rock in acid soils as influenced by nitrogen and potassium fertilizers. Soil Sci.127:371-376.
74.Dalal, R. C. 1982. Effect of plant growth and addition of plant residues on the phosphates activity in soil. Plant Soil 66:265-269.
75.Datta, H., S. Banik, and R. K. Gypta. 1982. Studies of the efficient of phytohormone producing solubilizing Bacillus firmun in augmenting paddy yield in acid soils of Nageland. Plant Soil 69:365-373.
76.Dormaar, J. 1972. Seasonal patterns of soil organic phosphorous. Can. J. Soil Sci. 52:107-122.
77.Eghball, B. and F. P. James. 1999. Phosphorus- and nitrogen-based manure and compost applications: corn production and soil phosphorus. Soil. Sci. Soc. Am. J. 63:895-901.
78.Evangelou, L. P. and R. L. Blevins. 1988. Effect of long-term tillage systems and nitrogen addition on potassium quantity-intensity relationships. Soil Sci. Soc. Am. J. 52:1047-1054.
79.Fauci, M. F. and R. P. Dick. 1994. Soil microbial dynamics: Short and long-term effects of inorganic and organic nitrogen. Soil Sci. Soc. Am. J. 58:801-816.
80.Flannery, R. L. and D. K. Markus. 1980. Automated analysis of soil extracts for phosphorous, potassium, calcium and magnesium. Jour. Assoc. Off. Anal. Chem. 63:779-787.
81.Fox, T. R. and N. B. Comerford. 1990. Low-molecular-weight organic acid in selected forest soils south-estern USA. Soil Sci. Soc. Am. J. 54:1139-1144.
82.Fraser, D. G., J. W. Doran, W. W. Sahs, and G. W. Lesoing. 1988. Soil microbial population’s activities under conventional and organic management. J. Environ. Qual. 17:585-590.
83.Gerretsen, F. C. 1948. The influence of microorganism on the phosphate intake by the plant. Plant Soil. 1:51-81.
84.Ginting, D., A. Kessavalou, B. Eghball, and J. W. Doran. 2003. Greenhouse gas emission and soil indicators four years after manure and compost applications. J. Environ. Qual. 32:23-32.
85.Girvan, M. S., J. Bullimore, A. S. Ball, J. N. Pretty, and A. M. Osborn. 2004. Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl. Environ. Microbiol. 70:2692-2701.
86.Goenadi, D., H. Siswanto, and Y. Sugiarto. 2000. Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci. Am. J. 64:927-932.
87.Halder, A. K., A. K. Mishra, P. Bhattacharyya, and P. K. Chakrabartty. 1990. Solubiliztion of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appl. Microbiol. 14:89-95.
88.Hamzes, M., M. Nimah, and M. Zaabout. 1984. Effectiveness of six digestion procedures to evaluate the status of major elements (Ca, K, Mg and Na) in citrus leaves. Commun. Soil. Sci. Plant Anal. 15:1135-1145.
89.Han, H., Supanjan, K. D. Lee. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ. 52:130-136.
90.Hassink, J., G. Lebbink, and J. A. van Veen. 1991a. Microbial biomass and activity of a reclaimed-polder soil under a conventional or reduced-input farming system. Soil Biol. Biochem. 23:507-513.
91.Hassink, J., J. H. O. Voshaar, E. H. Nijhuis, and J. A. V. Veen. 1991b. Dynamics of the microbial populations of reclaimed-polder soil under a conventional or reduced-input farming system. Soil Biol. Biochem. 23:515-524.
92.Hattori, H. 1988. Microbial activities in soil amended with sewage sludge. Soil Sci. Plant Nutr. 34:221-232.
93.Hilda, R. and Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Advan. 17:319-339.
94.Hiltner, L. 1904. Uber neuere Erfahrungen und Problem auf dem Gebeit der Bodenbakteriologie und unter besonderer Beruksichtigung der Grundungung und Brache. Arb Dtsch. Landwirt. Ges.98:59-78.
95.Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated form forest soils. Soil Biol. Biochem. 24 (4): 389-394.
96.Illmer, P. and F. Schinner. 1995. Solubilization of inorganic calcium phosphate-solubization mechanisms. Soil Biol. Biochem. 27:257-263.
97.Jayachandran, K., A. P. Schwab, and Hetrik, B. A. D. 1989. Mycorrhizal mediation of phosphorus availability: Synthetic iron chelate effects on phosphorus solubilization. Soil Sci. Soc. Am. J. 53:1701-1706.
98.Jenkinson, D. S. and J. N. Ladd. 1981. Microbial Biomass in Soil: Measurement and Turnover. In: Paul, E. A. Ladd. J. N. (Eds.), Soil Biochemistry Marcel Dekker, New York, 5:455-471.
99.Joergense, R. G. and P. C. Brookes. 1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5M K2SO4 soil extracts. Soil Biol. Biochem. 22:1023-1027.
100.Jurinak, J. J., L. M. Dudley, M. F. Allen, and W. G. Knight. 1986. The role of calcium oxalates in the availability in soils of semiarid regions a thermodynamic study. Soil Science 142:255-261.
101.Katznelson, H., E. A. Peterson, and J. W. Rouatt. 1962. Phosphate-dissolving microorganisms on seed and in the root zone of plants. J. Can. J. Bot. 40 : 1181-1186.
102.Kim, Y. H., B. Bae, and Y. K. Choung. 2005. Optimization of biological phosphorous removal from contaminated sediments with phosphate-solubilizing microorganisms. J. Bioscience and Bioengineering. 99:23-29.
103.Kpomblekou, A, K. and M. A. Tabatabai. 1994. Effect of organic acids on release of phosphorus from phosphate rock. Soil Science 158:442-453.
104.Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. pp.225-246. In A. L. Page (eds.). Methods of Soil Analysis. Part 2. 2nd edition. ASA, Madison, WI. USA.
105.Kucey, R. M. N. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil Sci. 63:671-678.
106.Kucey, R. M. N. 1988. Effect on Penicillium balaji on the solubility and uptake of P and micronutrient from soil by wheat. Can. J. Soil Sci. 68:261-270.
107.Kundu, B. S. and A. C. Gaur. 1984. Rice response to inoculation with N2-fixing and P-solubilizing microorganisms. Plant and Soil 79:227-234.
108.Laboski, C. A. M. and J. A. Lamb. 2003. Changes in soil test phosphorus concentration after application of manure or fertilizer. Soil Sci. Am. J. 67:544-554.
109.Lapeyrie, F., J. Ranger, and D. Vairelles. 1991. Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can. J. Bot. 69:342-346.
110.Lynch, J. M. and L. M. Panting. 1982. Effects of season, cultivation and nitrogen fertilizer on the size of the microbial biomass. J. Sci. Fd. Agric. 33:249-252.
111.Lynch, J. M. 1983. Soil Biotechnology. Microbilogical Factors in Crop Productivity. Black well Scientific Publications, Oxford, 191pp.
112.McLean, E. O. 1982. Soil pH and Lime requirement. pp. 199-224. In A. Klute et al. (ed.) Method of Soil Analysis. Park I. 2nd edition. ASA, Madison, WI. USA.
113.Mello, M. R. F., S. M. P. Assis, R. L. R. Mariano, T. R. Camara, and M. Menezes. 2000. Screening of bacteria and bacterization methods for growth-promotion of micropropagated pineapple plantets. In:5th International PGPR Workshop,Cordoba,Argentina.
114.Meunchang, S., S. Panichsakpatana, and R. W. Weaver. 2006. Tomato growth in soil amended with sugar mill by-products compost. Plant and soil. 280:171-176.
115.Moghimi, A., M. E. Tate. and J. M. Oades. 1978. Characterization of rhizosphere products especially 2-ketogluconic acids. Soil Biol. Biochem. 10:283-287.
116.Murphy, J. and J. D. Rieley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta.27: 31-36.
117.Nannipieri, P., R. L. Johnson and E. A. Paul. 1998. Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem. 30:223-229.
118.Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. pp.539-579. In A. L. Page (eds.). Methods of Soil Analysis. Part 2. 2nd edition. ASA, Madison, WI.USA.
119.Olga, Georgieva. 2003. Enterobacter cloacae bacterium as a growth regulator in greenhouse cucumbers (Cucumis sativus L.). Cucubit Genetics Cooperative Report 26:4-6.
120.Olsen, S. R. and L. E. Sommers. 1982. Phosphorus. In A. L. Page (eds.). Methods of Soil Analysis. Part 2. 2nd edition. pp.403-429. ASA, Madison, WI.USA.
121.Page, A. K., R. H. Miller. and D. R. Keeney. 1982. Methods of soil analysis, Part 2.
122.Parkinson, D. 1994. Filamentous fungi. pp. 329-350. In Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties, eds. R. W. Weaver et al., WI. USA: Soil Sci. Soc. Am., Inc.
123.Paul, N. B. and W. V. B. Sundara Rao. 1971. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant Soil 35:127-132.
124.Paul, E. A. and Juma, N. G. 1981. Mineralization and immobilization of soil Nitrogen by microorganisms. In F. E. Clark, and T. Rosswall (ed.), TerresExperiment nitrogen Cycles, Ecological Bulletins (Stockholm). 33:179-195.
125.Peix, A., A. A. Rivas-Boyero, P. F. Mateos, C. Rodirguez-Barrueco, E. Martinez-Molina, and E. Velazquez. 2002. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Bio. Biochem. 33(1):103-110.
126.Piriyaprin, S., S. Vanlada, L. Pitayakon, L. Chaveevan. and P. Nuanjun. 2002. Study on soil microbial biodiversity in rhizosphere of vetiver grass in degradating soil. 17th WCSS, 14-21:1896-1-1896-7, Thailand.
127.Pradhan, N. and L. B. Sukla. 2005. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African. J. Biotechnology 5(10):850-854.
128.Ramazan, C., F. Donmez, A. Aydin, and F. Sahin. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil condition. Soil Bio. Biochem. 38(6):1482-1487.
129.Reganold, J. P. 1989. Comparison of soil properties as influenced by organic and conventional farming systems. Amer. J. Alternative Agri.3:144-155.
130.Reyes, I., L. Bernier and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillum rugulosum. Microb. Ecol. 44:39-48.
131.Reyes, I., A. Valery and Z. Valduz. 2006. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant and Soil. 287:69-75.
132.Rhoades, J. D. 1982. Soluble salts. pp.167-179. In A. L. Page (ed.) Methods of Soil Analysis, Part 2. 2nd edition. ASA, Madison, WI. USA.
133.Rochette, P. and E. C. Gregorich. 1998. Dynamics of soil microbial biomass C, soluble organic C and CO2 evolution after three years of manure application. Can. J. Soil Sci. 78:283-290.
134.Rovira, A. D. and C. B. Davey. 1974. Biology of the rhizosphere. pp.153-204. In The-Plant-Root and its Environment (E. W. Cursova, ed.). University of Virginia Press, Charlottesville,
135.Saber, M. S. M., Yousry, and M. Kabesh. 1977. Effect of manganese application on the activity of phosphate-dissolving bacteria in a calcareous soil cultivated with pea plants. Plant Soil 47:335-339.
136.Salih, H. M., A. I. Yahya, A. M. Abdul-Rahem, and B. H. Munam. 1989. Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant Soi1 20:181-185.
137.SAS Institute. 1990. SAS User Guide 6.10 Edition. SAS Institute Inc., SAS Circle, Box 8000, Cary, NC 27515-8000, USA.
138.Seatz, L. F. and H. B. Peterson. 1964. Acid, alkaline, saline, and sodic soils. In Firman E. Bear (ed.)〝Chemistry of the Soil.〞American Chemical Society Monograph Series. p.292-319.
139.Sharam, S. N., S. B. Ray, S. L. Pandey, and R. Prasad. 1983. Effect of irrigation, pyrites and phosphobacteria on the efficiency of rock phosphate applied to lentils. Soil Sci. Camb. 101:467-472.
140.Shang, C., P. M. Huang, and W. B. Strewart. 1990. Kinetics of adsorption of organic and inorganic phosphate by short-range ordered precipitate of aluminum. Can. J. Soil Sci. 70:461-470.
141.Singh, M., S. Kundu, A. K. Tripathi, and P. N. Takkar. 1999. Transformation of soil organic pools N influenced by integrated use of organic manure and fertilizer nitrogen under soybean-wheat system in vertisol. J. Indian. Soc. Soil Sci. 47:483-487.
142.Smith, J. L. 1994. Cycling of nitrogen through microbial activity. In J. L. Hatfield, and B. A. Steward (ed.) Soil biology: effects on soil quality, 91-120. CRC Press Inc, U.S.A.
143.Souchie, E. L., O. J. Saggin-Junior, E. M. R. Silva, E. F. C. Campello, R. Azcon, and J. M. Barea. 2006. Communities of P-Solubilizing bacteria, Fungi and Arbuscular Mycorrhizal Fungi in grass pasture and secondary forest of Paraty, RJ-Brazil. An Acad Bras Cienc.78(1):183-193.
144.Souchie, E. L., R, Azcon, J. M. Barea, O. J. Saggin-Junior, and E. M. R. D. Silva. 2006. Phosphate solubilization and synergism between P-solubilizing and arbuscular mycorrhizal fungi. Pesq. agropec. bras. Brasillia. 41(9):1405-1411.
145.Sperber, J. I. 1957. Solution of mineral phosphate by soil bacteria. J. Nature 180:994-995.
146.Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. J. Aust. J. Agric. Res. 9:778-781.
147.Stevenson, F. J. 1986. Cycles of soil: carbon, nitrogen, phosphorous, sulfur, micronutrients. John Wiley & Sons, New York.
148.Stockfisch, N., R. G. Joergensen, V. Wolters, T. Klein, and Y. Eberhardt. 1995. Examination of microbial biomass in beech forest moder profilies. Biol. Fertil. Soils,19:209-214.
149.Stotzky, G. 1986. Influence of soil mineral colloids on metabolic processes, growth, adhension, and ecology of microbes and viruses. In P. M. Huang, and M. Schnitzer (eds) Interation of Soil Minerals with Natural Organic and Microbes. Soil Sci. Soc. Am. Madison, Wisc. USA.
150.Subba Rao, N. S. 1982. Biofertilizers in Agriculture. Sunil Printers, New Delhi, India.
151.Suh, J. S., S. K. Lee, K. S. Kim, and K. Y. Seong. 1995. Application of VA Mycorrhizae and phosphate solubilzers as biofertilizers in Korea. National Institute of Agricultural Science and Technology, RDA Repulic of Korea.
152.Sullivan, D. M., A. I. Bary, D. R. Thomas, S. C. Fransen, and C. G. Cogger. 2002. Effect wase compost effects on fertilizer nitrogen efficiency, available nitrogen, and tall fescue yield. Soil Sci. Soc. Am. J. 66:154-161.
153.Tan, K. H. 1980. The release of silicon, aluminum, and potassium during decomposition of soil minerals by humic acids. Soil Sci.129:5-11.
154.Thakuria, D., N. C. Talukdar, C. Goswami, S. Hazarika, R. C. Boro, and M. R. Khan. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current science. 86:978-985.
155.Thirup, L., K. Johnsen, and A. Winding. 2001. Succession of indigenous Pseudomonas spp. and Actinomyces on barley roots affected by the antagonistic strains Pseudomonas fluorescens DR54 and the fungicide imazalil. Appl. Environ. Microbiol. 67:1147-1153.
156.Thomas, G. V., M. V. Shantaram, and N. Saraswathy. 1985. Occurance and activity of phosphate-solubilizing fungi from coconut plantation soils. Plant Soil 87:357-364.
157.Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Soil Fertility and Fertilizers. pp. 189-248. Macmillan Pub. New York.
158.Vazquez, M. M., S. Cesar, R. Azcon, and J. M. Barea. 2000. Interactions between arbuscular mycorrhzizal fungi and other microbial inoculates (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261-272.
159.Wahid, O. A. A. and T. A. Mehana. 2000. Impact of phosphate-solubilizing fungi on the yield and phosphorous-uptake by wheat and faba bean plants. Microbiol. Res. 155:221-227.
160.Wander, M. M., S. J. Traina. B. R. Stinner, and S. E. Peters. 1994. Organic and conventional management affects on biologically active soil organic matter pools. Soil Sci. Soc. Am. J. 58:1130-1139.
161.Wang, B., M. L. Dale. and Kochman. 1999. Studies on a pathogenicity assay for screening cotton germplasms for resistance to Fusarium oxysporum f.sp.vasinfectum in the glasshouse. Australian Joural of experimental Agriculture. 39:967-974.
162.Watanabe, F. S. and S. R. Olsen. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Proceedings 29:677-678.
163.Weil, R. R. 2000. Soil and plant influences on crop response to two African phosphate rocks. Agron. J. 92:1167-1175.
164.Witter, E., A. M. Martensson, and F. V. Garcia. 1993. Size of the microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biol. Biochem. 25: 659-669.
165.WollumⅡ, A. G. 1982. Cultural methods for soil microorganisms. pp. 781-802. In A. L. Page et al (ed.), Methods in Soil Analysis, Part 2.Chemical and microbiological properties. ASA, Madison, WI, USA.
166.Yahya, A. I. and S. K. Al-Azawi. 1989. Occurrence of phosphate-solubilizing bacteria in some Iraqi soils. Plant Soil. 117:135-141.
167.Yin, R. L. 1988. Phosphate dissolving microorganisms in up land soils in China. Soil (Turang). Published by Chinese Acad. Sci. 20 (5): 243-246.
168.Young, C. C. 1994. Selection and application of biofertilizers in Taiwan. Food & Fertilizer Technology Center, Technical Bulletin 141:1-9.
169.Young, C. C. 2005. Development and application of Biofertilizers in Taiwan. Multi-country study mission on business potential for agricultural biotechnology products. The Asia Productivity Organization. 7:67-74.
170.Zaidi, A. and M. S. Khan. 2006. Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green Gram-Bradyrhizobium. Turk. J. Agric. 30:223-230.
171.Zayed, G. and H. Abdel-Motaal. 2005. Bio-production of compost with low pH and high soluble phosphorus from sugar cane bagasse enriched with rock phosphate. J. Microbiology and Biotechnology. 21:747-752.
172.Zuberer, D. A. 1994. Recovery and enumeration of viable bacteria. pp. 119-144. In Methods of Soil Analysis, park 2, Microbiological and Biochemical Properties, eds. R. W. Weaver et al., WI. USA: Soil Sci. Soc. Am., Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 29. 陳仁炫、王怡雯。1999。石灰的施用對強酸性土壤鉀固定及鉀有效性的影響。土壤與環境2:333-346。
2. 27. 陳仁炫。1995。有機質肥料的添加對土壤磷有效性及礦化作用之影響。中國農業化學會誌 33:533-549。
3. 25. 陳仁炫。1993。鹽害土壤的問題及其改良對策。農藥世界116:p. 71-87。
4. 21. 張碧芬、趙維良。1994。微生物與環境污染。環保科技通訊p11-15。
5. 19. 張鳳屏、楊秋忠。1992。囊叢枝菌根菌與溶磷細菌對塑膠袋茶樹扦插苗生長之影響。臺灣茶業研究彙報11 : 79-89。
6. 3. 王銀波、黃山內、趙震慶。1996。有機農耕法作物養分吸收與殘留之評估。中華農學會報 新173:103-119。
7. 26. 陳仁炫、丁美幸。1993。土壤pH及磷肥施用對酸性和石灰質土磷生物有效性的影響。中國農業化學會誌 31:653-666。
8. 32. 彭德昌。2000。微生物接種對無子西瓜生育與鮮重之影響。花蓮區農業改良場研究彙報18:61-66。
9. 34. 曾證諺、陳仁炫。2004。禽畜糞堆肥施用再強酸性土壤之肥培策略評估。土壤與環境7:77-89。
10. 37. 詹朝清、張建生。1999。有機質肥料對甘藍生育之影響。花蓮區農業改良場研究彙報17:81-91。
11. 38. 莊作權、楊明富。1992。水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力之影響。中國農業化學會誌 30:553-568.
12. 39. 楊盛行、賴朝明、孫瓏月、羅陽青、范曉雲、楊鈞凱、魏嘉碧。1998。塔塔加高山土壤微生物生態。中國農業化學會誌36:229-238。
13. 40. 趙震慶、蘇楠榮、王銀波。1996。有機農耕法之土壤肥力的變遷。中華農學會報 新173:85-102。
14. 41. 趙震慶、趙維良、楊秋忠。2004。不同農業生態系土壤中微生物生質量與脫氮作用。中華農學會報 5 (5):401-415。
15. 42. 劉瑞美、楊秋忠。2002。接種溶磷根瘤菌對作物生長及養分吸收之影響。土壤與環境5:153-164。