|
1. Adell, R., Hansson, B.O., Brånemark, P.I. & Breine, U. Intra-osseous anchorage of dental prostheses. II. Review of clinical approaches. Scand J Plast Reconstr Surg 4, 19-34 (1970). 2. Brånemark, P.I. et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3, 81-100 (1969). 3. Schroeder, A., van der Zypen, E., Stich, H. & Sutter, F. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg 9, 15-25 (1981). 4. Mellado-Valero, A., Ferrer-Garcia, J., Herrera-Ballester, A. & Labaig-Rueda, C. Effects of diabetes on the osseointegration of dental implants. Med Oral Patol Oral Cir Bucal 12, E38-43 (2007). 5. Yerit, K.C. et al. Implant survival in mandibles of irradiated oral cancer patients. Clin Oral Implants Res 17, 337-344 (2006). 6. Visch, L.L., van Waas, M.A., Schmitz, P.I. & Levendag, P.C. A clinical evaluation of implants in irradiated oral cancer patients. J Dent Res 81, 856-859 (2002). 7. Puleo, D.A. & Nanci, A. Understanding and controlling the bone-implant interface. Biomaterials 20, 2311-2321 (1999). 8. Guillemot, F. Recent advances in the design of titanium alloys for orthopedic applications. Expert Review of Medical Devices 2, 741-748 (2005). 9. Salvi, G.E. & Lang, N.P. Changing paradigms in implant dentistry. Crit Rev Oral Biol Med 12, 262-272 (2001). 10. Cochran, D.L., Schenk, R.K., Lussi, A., Higginbottom, F.L. & Buser, D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 40, 1-11 (1998). 11. Martines, E. et al. Air-Trapping on Biocompatible Nanopatterns. Langmuir 22, 11230-11233 (2006). 12. Buser, D. et al. Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface. J Dent Res 83, 529-533 (2004). 13. Schwarz, F. et al. Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs. J Clin Periodontol 34, 78-86 (2007). 14. Barewal, R.M., Oates, T.W., Meredith, N. & Cochran, D.L. Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 18, 641-651 (2003). 15. MacDonald, D.E., Deo, N., Markovic, B., Stranick, M. & Somasundaran, P. Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials 23, 1269-1279 (2002). 16. Mrksich, M. et al. Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci U S A 93, 10775-10778 (1996). 17. Garcia, A.J., Vega, M.D. & Boettiger, D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 10, 785-798 (1999). 18. Sundgren, J.E., Bodo, P. & Lundstrom, I. Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. Journal of Colloid and Interface Science 110, 9-20 (1986). 19. Eriksson, C., Broberg, M., Nygren, H. & Oster, L. Novel in vivo method for evaluation of healing around implants in bone. J Biomed Mater Res A 66, 662-668 (2003). 20. Matsuura, T., Hosokawa, R., Okamoto, K., Kimoto, T. & Akagawa, Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials 21, 1121-1127 (2000). 21. Bale, M.D., Wohlfahrt, L.A., Mosher, D.F., Tomasini, B. & Sutton, R.C. Identification of vitronectin as a major plasma protein adsorbed on polymer surfaces of different copolymer composition. Blood 74, 2698-2706 (1989). 22. Futami, T. et al. Tissue Response to Titanium Implants in the Rat Maxilla: Ultrastructural and Histochemical Observations of the Bone-Titanium Interface. Journal of Periodontology 71, 287-298 (2000). 23. Murai, K. et al. Light and electron microscopic studies of bone-titanium interface in the tibiae of young and mature rats. J Biomed Mater Res 30, 523-533 (1996). 24. Ayukawa, Y. et al. An immunoelectron microscopic localization of noncollagenous bone proteins (osteocalcin and osteopontin) at the bonetitanium interface of rat tibiae. Journal of Biomedical Materials Research 41, 111-119 (1998). 25. Rezania, A., Thomas, C.H., Branger, A.B., Waters, C.M. & Healy, K.E. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. Journal of Biomedical Materials Research 37, 9-19 (1997). 26. Howe, A.K., Aplin, A.E. & Juliano, R.L. Anchorage-dependent ERK signaling-mechanisms and consequences. Current Opinion in Genetics & Development 12, 30-35 (2002). 27. Gilmore, A.P. Anoikis. Cell Death Differ 12, 1473-1477 (2005). 28. Krause, A., Cowles, E.A. & Gronowicz, G. Integrin-mediated signaling in osteoblasts on titanium implant materials. Journal of Biomedical Materials Research 52, 738-747 (2000). 29. Garcia, A.J. & Reyes, C.D. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 84, 407-413 (2005). 30. Pierschbacher, M.D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33 (1984). 31. Aumailley, M. et al. Arg-Gly-Asp constrained within cyclic pentapoptides Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Letters 291, 50-54 (1991). 32. Porte-Durrieu, M.C. et al. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 25, 4837-4846 (2004). 33. Dee, K.C., Rueger, D.C., Andersen, T.T. & Bizios, R. Conditions which promote mineralization at the bone-implant interface: a model in vitro study. Biomaterials 17, 209-215 (1996). 34. Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385-4415 (2003). 35. Xiao, S.J. et al. Immobilization of the cell-adhesive peptide Arg–Gly–Asp–Cys (RGDC) on titanium surfaces by covalent chemical attachment. Journal of Materials Science: Materials in Medicine 8, 867-872 (1997). 36. Massia, S.P. & Hubbell, J.A. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114, 1089-1100 (1991). 37. Maheshwari, G., Brown, G., Lauffenburger, D.A., Wells, A. & Griffith, L.G. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113, 1677-1686 (2000). 38. Dettin, M. et al. Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials. J Biomed Mater Res 60, 466-471 (2002). 39. Rezania, A. & Healy, K.E. The effect of peptide surface density on mineralization of a matrix deposited by osteogenic cells. Journal of Biomedical Materials Research 52, 595-600 (2000). 40. Hasenbein, M.E., Andersen, T.T. & Bizios, R. Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts. Biomaterials 23, 3937-3942 (2002). 41. Gawalt, E.S. et al. Bonding Organics to Ti Alloys: Facilitating Human Osteoblast Attachment and Spreading on Surgical Implant Materials. Langmuir 19, 200-204 (2003). 42. Zreiqat, H. et al. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A 64, 105-113 (2003). 43. Rezania, A. & Healy, K.E. Biomimetic Peptide Surfaces That Regulate Adhesion, Spreading, Cytoskeletal Organization, and Mineralization of the Matrix Deposited by Osteoblast-like Cells. Biotechnol. Prog. 15, 19-32 (1999). 44. Lin, X., Takahashi, K., Liu, Y. & Zamora, P.O. Enhancement of cell attachment and tissue integration by a IKVAV containing multi-domain peptide. Biochim Biophys Acta 1760, 1403-1410 (2006). 45. Ferris, D.M. et al. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20, 2323-2331 (1999). 46. Germanier, Y., Tosatti, S., Broggini, N., Textor, M. & Buser, D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res 17, 251-257 (2006). 47. Kroese-Deutman, H.C., van den Dolder, J., Spauwen, P.H. & Jansen, J.A. Influence of RGD-loaded titanium implants on bone formation in vivo. Tissue Eng 11, 1867-1875 (2005). 48. Schliephake, H. et al. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin Oral Implants Res 13, 312-319 (2002). 49. Elmengaard, B., Bechtold, J.E. & Soballe, K. In vivo effects of RGD coated titanium implants inserted in two bone-gap models. J Biomed Mater Res A 75, 249-255 (2005). 50. Elmengaard, B., Bechtold, J.E. & Soballe, K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 26, 3521-3526 (2005). 51. Schliephake, H. et al. Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater 73, 88-96 (2005). 52. Rammelt, S. et al. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27, 5561-5571 (2006). 53. Reyes, C.D., Petrie, T.A., Burns, K.L., Schwartz, Z. & Garcia, A.J. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 28, 3228-3235 (2007). 54. Huang, N.P. et al. Poly(L-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces: Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption. Langmuir 17, 489-498 (2001). 55. Pasche, S., DePaul, S.M., Voros, J., Spencer, N.D. & Textor, M. Poly(LLysine)-graft-poly(ethylene glycol)) Assembled Monolayers on Niobium Oxide Surfaces: A Quantitative Study of the Influence of Polymer Interfacial Architecture on Resistance to Protein Adsorption by ToF-SIMS and in Situ OWLS. Langmuir 19, 9216-9225 (2003). 56. Sergeeva, A., Kolonin, M.G., Molldrem, J.J., Pasqualini, R. & Arap, W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58, 1622-1654 (2006). 57. Brissette, R., Prendergast, J.K. & Goldstein, N.I. Identification of cancertargets and therapeutics using phage display. Curr Opin Drug Discov Devel 9, 363-369 (2006). 58. Hajitou, A., Pasqualini, R. & Arap, W. Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 16, 80-88 (2006). 59. Hoess, R.H. Protein Design and Phage Display. Chem. Rev. 101, 3205-3218 (2001). 60. Hosse, R.J., Rothe, A. & Power, B.E. A new generation of protein display scaffolds for molecular recognition. Protein Sci 15, 14-27 (2006). 61. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389-391 (1994). 62. Ruoslahti, E. RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology 12, 697-715 (1996). 63. Petty, N.K., Evans, T.J., Fineran, P.C. & Salmond, G.P.C. Biotechnological exploitation of bacteriophage research. Trends in Biotechnology 25, 7-15 (2007). 64. Williams, C. Biotechnology match making: screening orphan ligands and receptors. Curr Opin Biotechnol 11, 42-46 (2000). 65. Sarikaya, M., Tamerler, C., Jen, A.K., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nat Mater 2, 577-585 (2003). 66. Seker, U.O. et al. Adsorption Behavior of Linear and Cyclic Genetically Engineered Platinum Binding Peptides. Langmuir (2007). 67. Souza, G.R. et al. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 103, 1215-1220 (2006). 68. Goede, K., Busch, P. & Grundmann, M. Binding Specificity of a Peptide on Semiconductor Surfaces. Nano Lett. 4, 2115-2120 (2004). 69. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. & Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665-668 (2000). 70. Kase, D. et al. Affinity selection of peptide phage libraries against singlewall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir 20, 8939-8941 (2004). 71. Kriplani, U. & Kay, B.K. Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. Curr Opin Biotechnol 16, 470-475 (2005). 72. Wang, S. et al. Peptides with selective affinity for carbon nanotubes. Nat Mater 2, 196-200 (2003). 73. Sanghvi, A.B., Miller, K.P.H., Belcher, A.M. & Schmidt, C.E. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat Mater 4, 496-502 (2005). 74. Watanabe, H. et al. A human antibody fragment with high affinity for biodegradable polymer film. Bioconjug Chem 18, 645-651 (2007). 75. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-1317 (1985). 76. Merzlyak, A. & Lee, S.W. Phage as templates for hybrid materials and mediators for nanomaterial synthesis. Curr Opin Chem Biol 10, 246-252 (2006). 77. Kehoe, J.W. & Kay, B.K. Filamentous Phage Display in the New Millennium. Chem. Rev. 105, 4056-4072 (2005). 78. Gramatikoff, K., Georgiev, O. & Schaffner, W. Direct interaction rescue, a novel filamentous phage technique to study protein -- protein interactions. Nucl. Acids Res. 22, 5761-5762 (1994). 79. Naik, R.R. et al. Peptide Templates for Nanoparticle Synthesis Derived from Polymerase Chain Reaction-Driven Phage Display. Advanced Functional Materials 14, 25-30 (2004). 80. Long, S. et al. Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expr Purif 46, 374-378 (2006). 81. Vallejo, L.F. et al. Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 94, 185-194 (2002). 82. Ruppert, R., Hoffmann, E. & Sebald, W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 237, 295-302 (1996). 83. Sampath, T.K., Muthukumaran, N. & Reddi, A.H. Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc Natl Acad Sci U S A 84, 7109-7113 (1987). 84. Wang, E.A. et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 87, 2220-2224 (1990). 85. Vallejo, L.F. & Rinas, U. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnol Bioeng 85, 601-609 (2004). 86. Liu, S.Q., Ito, Y. & Imanishi, Y. Cell growth on immobilized cell growth factor : I. Acceleration of the growth of fibroblast cells on insulinimmobilized polymer matrix in culture medium without serum. Biomaterials 13, 50-58 (1992). 87. Ito, Y., Inoue, M., Liu, S.Q. & Imanishi, Y. Cell growth on immobilized cell growth factor. 6. Enhancement of fibroblast cell growth by immobilized insulin and/or fibronectin. J Biomed Mater Res 27, 901-907 (1993). 88. Scheufler, C., Sebald, W. & Hulsmeyer, M. Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287, 103-115 (1999). 89. Kirsch, T., Sebald, W. & Dreyer, M.K. Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Mol Biol 7, 492-496 (2000). 90. Zhao, B. et al. Heparin Potentiates the in Vivo Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2. J. Biol. Chem. 281, 23246-23253 (2006). 91. Wu, H.C., Chang, D.K., Huang, C.T. Targeted Therapy for Cancer. J. Cancer Mol. 2: 57-66 (2006)
|