|
1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424. 2. 婦女乳房X光攝影檢查人數及篩檢涵蓋率. 2019, 衛生福利部國民健康署. 3. Niklason, L.T., et al., Digital tomosynthesis in breast imaging. Radiology, 1997. 205(2): p. 399-406. 4. Glick, S.J. and X. Gong. Optimal spectra for indirect detector breast tomosynthesis. in Medical Imaging 2006: Physics of Medical Imaging. 2006. International Society for Optics and Photonics. 5. Chang, C.H., et al., Computed tomography of the breast. A preliminary report. Radiology, 1977. 124(3): p. 827-9. 6. Gisvold, J.J., P.R. Karsell, and E.C. Reese, Clinical evaluation of computerized tomographic mammography. Mayo Clin Proc, 1977. 52(3): p. 181-5. 7. Chen, B. and R. Ning, Cone-beam volume CT breast imaging: feasibility study. Med Phys, 2002. 29(5): p. 755-70. 8. Boone, J., Breast CT: Its prospect for breast cancer screening and diagnosis. Advances in breast imaging: Physics, Technology and Clinical Applications, Categorical Course in Diagnostic Radiology Physics (Radiological Society of North America, Oak Brook, IL), 2004. 9. Boone, J.M., et al., Computed tomography for imaging the breast. Journal of mammary gland biology and neoplasia, 2006. 11(2): p. 103-111. 10. Ning, R., et al. A novel cone beam breast CT scanner: System evaluation. in Medical imaging 2007: physics of medical imaging. 2007. International Society for Optics and Photonics. 11. Lindfors, K.K., et al., Dedicated breast CT: initial clinical experience. Radiology, 2008. 246(3): p. 725-33. 12. O'Connell, A.M., D.L. Conover, and C.-F.L. Lin, Cone-beam computed tomography for breast imaging. Journal of Radiology Nursing, 2009. 28(1): p. 3-11. 13. ICRP, The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP, 2007. 37(2-4): p. 1-332. 14. Boone, J.M., N. Shah, and T.R. Nelson, A comprehensive analysis of DgN(CT) coefficients for pendant-geometry cone-beam breast computed tomography. Med Phys, 2004. 31(2): p. 226-35. 15. Thacker, S.C. and S.J. Glick, Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging. Phys Med Biol, 2004. 49(24): p. 5433-44. 16. Sechopoulos, I., S.S. Feng, and C.J. D'Orsi, Dosimetric characterization of a dedicated breast computed tomography clinical prototype. Med Phys, 2010. 37(8): p. 4110-20. 17. Sechopoulos, I., et al., Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry. Med Phys, 2012. 39(8): p. 5050-9. 18. Hernandez, A.M. and J.M. Boone, Average glandular dose coefficients for pendant-geometry breast CT using realistic breast phantoms. Med Phys, 2017. 44(10): p. 5096-5105. 19. Sarno, A., et al., Monte Carlo evaluation of glandular dose in cone-beam X-ray computed tomography dedicated to the breast: Homogeneous and heterogeneous breast models. Phys Med, 2018. 51: p. 99-107. 20. Hernandez, A.M., A.E. Becker, and J.M. Boone, Updated breast CT dose coefficients (DgNCT) using patient-derived breast shapes and heterogeneous fibroglandular distributions. Med Phys, 2019. 46(3): p. 1455-1466. 21. Zhang, C., P.R. Bakic, and A.D. Maidment. Development of an anthropomorphic breast software phantom based on region growing algorithm. in Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling. 2008. International Society for Optics and Photonics. 22. Bakic, P.R., et al., Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation. Med Phys, 2002. 29(9): p. 2131-9. 23. Bakic, P.R., et al., Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture. Med Phys, 2002. 29(9): p. 2140-51. 24. Bakic, P.R., et al., Mammogram synthesis using a three-dimensional simulation. III. Modeling and evaluation of the breast ductal network. Med Phys, 2003. 30(7): p. 1914-25. 25. Carton, A.K., et al., Development of a physical 3D anthropomorphic breast phantom. Med Phys, 2011. 38(2): p. 891-6. 26. Bakic, P.R., C. Zhang, and A.D. Maidment, Development and characterization of an anthropomorphic breast software phantom based upon region-growing algorithm. Med Phys, 2011. 38(6): p. 3165-76. 27. Tabar, L., et al., Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology, 2011. 260(3): p. 658-63. 28. Boyd, N.F., et al., Mammographic density and the risk and detection of breast cancer. New England Journal of Medicine, 2007. 356(3): p. 227-236. 29. McCormack, V.A. and I. dos Santos Silva, Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev, 2006. 15(6): p. 1159-69. 30. Kolb, T.M., J. Lichy, and J.H. Newhouse, Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology, 2002. 225(1): p. 165-75. 31. Korhonen, K.E., et al., Strategies to Increase Cancer Detection: Review of True-Positive and False-Negative Results at Digital Breast Tomosynthesis Screening. Radiographics, 2016. 36(7): p. 1954-1965. 32. Skaane, P., et al., Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology, 2013. 267(1): p. 47-56. 33. Van Engen, R., et al., Protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis system. EUREF, European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis, 2013. 34. Seyyedi, S. and I. Yildirim, 3D digital breast tomosynthesis image reconstruction using anisotropic total variation minimization. Conf Proc IEEE Eng Med Biol Soc, 2014. 2014: p. 6052-5. 35. Rodriguez-Ruiz, A., et al., New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers. Acta Radiol, 2018. 59(9): p. 1051-1059. 36. Poplack, S., Breast Tomosynthesis: Clinical Evidence. Radiol Clin North Am, 2017. 55(3): p. 475-492. 37. Sechopoulos, I., et al., Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med Phys, 2007. 34(1): p. 221-32. 38. Sechopoulos, I. and C.J. D'Orsi, Glandular radiation dose in tomosynthesis of the breast using tungsten targets. J Appl Clin Med Phys, 2008. 9(4): p. 2887. 39. Dance, D.R., K.C. Young, and R.E. van Engen, Estimation of mean glandular dose for breast tomosynthesis: factors for use with the UK, European and IAEA breast dosimetry protocols. Phys Med Biol, 2011. 56(2): p. 453-71. 40. Baptista, M., et al., Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms. Med Phys, 2015. 42(7): p. 3788-800. 41. Bouwman, R.W., et al., Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data. Phys Med Biol, 2015. 60(20): p. 7893-907. 42. Peppard, H.R., et al., Digital Breast Tomosynthesis in the Diagnostic Setting: Indications and Clinical Applications. Radiographics, 2015. 35(4): p. 975-90. 43. Gazi, P.M., et al., Evolution of spatial resolution in breast CT at UC Davis. Med Phys, 2015. 42(4): p. 1973-81. 44. Hammerstein, G.R., et al., Absorbed radiation dose in mammography. Radiology, 1979. 130(2): p. 485-91. 45. Dance, D.R., Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol, 1990. 35(9): p. 1211-9. 46. Dance, D.R., et al., Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol, 2000. 45(11): p. 3225-40. 47. Perry, N., et al., European guidelines for quality assurance in breast cancer screening and diagnosis Fourth Edition. Luxembourg: Office for Official Publications of the European Communities, 2006. 48. Wu, X., G.T. Barnes, and D.M. Tucker, Spectral dependence of glandular tissue dose in screen-film mammography. Radiology, 1991. 179(1): p. 143-8. 49. Wu, X., et al., Normalized average glandular dose in molybdenum target-rhodium filter and rhodium target-rhodium filter mammography. Radiology, 1994. 193(1): p. 83-9. 50. Boone, J.M., Glandular breast dose for monoenergetic and high-energy X-ray beams: Monte Carlo assessment. Radiology, 1999. 213(1): p. 23-37. 51. Boone, J.M., Normalized glandular dose (DgN) coefficients for arbitrary X-ray spectra in mammography: computer-fit values of Monte Carlo derived data. Med Phys, 2002. 29(5): p. 869-75. 52. Radiology, A.C.o., Mammography Quality Control Manual. 1999: American College of Radiology. 53. Yi, Y., et al., Radiation doses in cone-beam breast computed tomography: a Monte Carlo simulation study. Med Phys, 2011. 38(2): p. 589-97. 54. Dance, D.R., et al., Breast dosimetry using high-resolution voxel phantoms. Radiat Prot Dosimetry, 2005. 114(1-3): p. 359-63. 55. Hernandez, A.M., J.A. Seibert, and J.M. Boone, Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered. Med Phys, 2015. 42(11): p. 6337-48. 56. Sarno, A., et al., Homogeneous vs. patient specific breast models for Monte Carlo evaluation of mean glandular dose in mammography. Phys Med, 2018. 51: p. 56-63. 57. Huang, S.Y., et al., The effect of skin thickness determined using breast CT on mammographic dosimetry. Med Phys, 2008. 35(4): p. 1199-206. 58. Sarno, A., et al., A Monte Carlo study of monoenergetic and polyenergetic normalized glandular dose (DgN) coefficients in mammography. Phys Med Biol, 2017. 62(1): p. 306-325. 59. Kopans, D.B., Breast imaging. 2007: Lippincott Williams & Wilkins. 60. Erickson, D.W., et al., Population of 224 realistic human subject-based computational breast phantoms. Med Phys, 2016. 43(1): p. 23. 61. Yaffe, M.J., et al., The myth of the 50-50 breast. Med Phys, 2009. 36(12): p. 5437-43. 62. Koger, B. and C. Kirkby, Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods. Phys Med Biol, 2016. 61(24): p. 8839-8853. 63. Reynoso, F.J., J.J. Munro Iii, and S.H. Cho, Technical Note: Monte Carlo calculations of the AAPM TG-43 brachytherapy dosimetry parameters for a new titanium-encapsulated Yb-169 source. J Appl Clin Med Phys, 2017. 18(4): p. 193-199. 64. Andreo, P., Monte Carlo simulations in radiotherapy dosimetry. Radiat Oncol, 2018. 13(1): p. 121. 65. Soares, A.D., L. Paixao, and A. Facure, Determination of the dose rate constant through Monte Carlo simulations with voxel phantoms. Med Phys, 2018. 45(11): p. 5283-5292. 66. Tani, K., et al., MCNP simulations with a personalised voxel phantom to verify 131I content in thyroid estimated based on measurements with an NaI(Tl) spectrometer. Radiat Prot Dosimetry, 2019. 67. Villoing, D., et al., S values for neuroimaging procedures on Korean pediatric and adult head computational phantoms. Radiat Prot Dosimetry, 2019. 68. Hubbell, J.H. and S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. 1995, The National Institute of Standards and Technology. 69. DeMarco, J.J., et al., A verification of the Monte Carlo code MCNP for thick target bremsstrahlung calculations. Med Phys, 1995. 22(1): p. 11-6. 70. Sechopoulos, I., et al., Monte carlo reference data sets for imaging research. Report of the AAPM Task Group No. 195,(under review), 2014. 71. Johns, H.E., Physics of radiology. 1971: Charles River Media. 72. Hernandez, A.M., et al., Generation and analysis of clinically relevant breast imaging x-ray spectra. Med Phys, 2017. 44(6): p. 2148-2160. 73. Boone, J.M., T.R. Fewell, and R.J. Jennings, Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography. Med Phys, 1997. 24(12): p. 1863-74. 74. Fedon, C., et al., Monte Carlo study on optimal breast voxel resolution for dosimetry estimates in digital breast tomosynthesis. Phys Med Biol, 2018. 64(1): p. 015003. 75. Pan, Y., et al., Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation. Phys Med Biol, 2014. 59(18): p. 5243-60. 76. Vollmar, S.V. and W.A. Kalender, Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol, 2008. 18(8): p. 1674-82. 77. Duan, X., et al., Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol, 2011. 197(3): p. 689-95.
|