參考文獻
中文資料
1.王濟川、郭志剛(2004),Logistic 迴歸模型-方法及應用,五南圖書。
2.王保進(2004),多變量分析:套裝程式與資料分析,台北:高等教育出版社。
3.江世傑(2000),模糊類神經網路在消費性貸款之應用,國立成功大學工業管理研究所碩士論文。4.呂美慧(2000),銀行授信評等模式-Logistic Regression之應用,政治大學金融研究所碩士論文。5.江淑娟(2002),信用評等因素與信用卡違約風險之關係,逢甲大學保險研究所碩士論文。6.李美笑(2002),信用卡持卡人信用風險之研究,逢甲大學保險學系研究所碩士論文。7.何貴清(2002),消費者小額信用貸款之信用風險研究--以一商業銀行客戶為例,國立中山大學人力資源管理研究所碩士論文。8.吳明隆、涂金堂(2006),SPSS與統計應用分析-二版,五南圖書。
9.林建州(2001),銀行個人消費信用貸款授信風險評估模式之研究,中山大學財務管理學系研究所碩士論文。10.林勉今(2003),消費性貸款授信風險評估之研究-以X銀行為例,大同大學事業經營研究所碩士論文。11.施孟龍、尤清芳、李佳珍(1999),Logit Model 應用於信用卡信用風險審核之研究,金融財務月刊。
12.葉秋南(1997),美國金融業風險管理,台北:財團法人金融聯合徵信中心編輯委員會。
13.張仁哲(1982),我國信用卡現代化問題之研究,國立政大企研所碩士論文。14.孫炳焱(2001),台灣儲蓄互助社發展史,合作經濟,70,1-17。
15.郭迪賢(2001),儲蓄互助社經營理念原則,合作經濟,68,37-42。16.郭迪賢(2002), 論儲蓄互助社的本質,合作經濟,72,1-10。17.陳鴻文(2002),個人小額信用貨款授信模式之個案研究,國立高雄第一科技大學財務管理系碩士論文。18.曾俊堯(1991),信用卡信用管理之研究」國立政大企研所碩士論文。19.莊傑富(2005),不同信用評分模型對信用評等之影響,東吳大學經濟學系碩士論文。20.詹育晟(2005),個人信用行為評分模式之研究—以現金卡用戶為例,國立政治大學資訊管理研究所碩士學位論文。21.劉泰谷(2003),信用卡信用評分模型之建構與分析,私立世新大學財務管理研究所碩士論文。22.鄭志新(2005),小額信貸信用評分模型之建構,世新大學管理學院經濟學系碩士學位論文。23.戴堅(2004),個人消費性信用貸款授信評量模式之研究,國立中正大學國際經濟研究所碩士論文。24.簡安泰(1977),消費者信用評分制度之研究,國立政大企研所碩士論文。25.儲蓄互助社法(2002)。
26.儲蓄互助社手冊(2006)。
27.儲蓄互助社法規彙編(2004)。
28.龔昶元(1998),Logistic Regression 模式應用於信用卡信用風險審核之研究,台北銀行月刊,28卷9期,頁35-49。
英文資料
Altman, E., 1968, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, Journal of Finance, 23,589–609.
Altman, E., Haldeman, R. and Narayanan, P., 1977, Zeta analysis:a new model to identify bankruptcy risk of corporations,Journal of Banking Finance, 1, 29–54.
Ann‐Marie, Ward and Donal, McKillop G., 2005, An investigation into the link between UK credit union characteristics, location and their success, Annals of Public and Cooperative Economics, 76(3), 461-489.
Allen, N. Berger and Scott, W. Frame, 2007, Small business credit scoring and credit availability, Journal of Small Business Management, 45(1), 5-22.
Benjamin, Lehn, Rubin, Julia Sass and Zielenbach, Sean, 2004, Community development financial institutions: current issues and future prospects, Journal of Urban Affairs, 26(2), 177-195.
Boyer, Kenneth K. and Tomas, G. M. Hult, 2005, Customer behavior in an online ordering application: a decision scoring model, Decision Sciences, 36(4), 569-598.
Cheng-Lung, Huang , Mu-Chen, Chen and Chieh-Jen, Wang, 2007, Credit scoring with a data mining approach based on support vector machines, Expert Systems with Applications, 33(4), 847-856.
Donal, G. McKillop, Anne-Marie, Ward and John, O. S. Wilson, 2007, The development of credit unions and their role in tackling financial exclusion, Public Money and Management, 27(1), 37-44.
David, Martens, Bart, Baesens, Tony, Van Gestel and Jan, Vanthienen, 2007, Comprehensible credit scoring models using rule extraction from support vector machines, European Journal of Operational Research, 183(3), 1466-1476.
Edward, I. Altman and Gabriele, Sabato, 2007, Modelling credit risk for SMEs: evidence from the U.S. market, Abacus, 43(3), 332-357.
Hosmer and Lemeshow, 2000, Applied Logistic Regression, 2nd.
Hamer, M., 1983, Failure prediction: sensitivity of classification accuracy to alternative statistical methods and variable set, Journal of Accounting and Public Policy, 2, 289–307.
Hand;D. J. and Henley, W. E., 1997, Statistical classification methods in consumer credit scoring: a review, Journal of the Royal Statistical Society., 160(3), 523-541.
Johnson, L. A., G. R. Welch, W. Rens, and J. R. Dobrinsky., 1998, Enhanced flow cytometric sorting of mammalian X and Y sperm: High speed sorting and orienting nozzle for artificial insemination, Theriogenology, 49-361.
Jalal, Akhavein, Scott, W. Frame and White, Lawrence J., 2005, The diffusion of financial innovations: an examination of the adoption of small business credit scoring by large banking organizations, The Journal of Business, 78(2).
Jih-Jeng, Huang, Gwo-Hshiung, Tzeng and Chorng-Shyong, Ong, 2005, Two-stage genetic programming (2SGP) for the credit scoring model, Department of Information Management, National Taiwan University, Institute of Management of Technology and Institute of Traffic and Transportation College of Management, National Chiao Tung University, Department of Business Administration, Kainan University.
Kasper, Roszbach, 2004, Bank lending policy, credit scoring, and the survival of loans, MIT Press journals, 86(4), 946-958.
Kevin, Wei-yu Chiang, Zhang, Dongsong and Lina, Zhou, 2006, Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression, Decision Support Systems, 41(2),514-531.
Lin, L. and Piesse, J., 2004, Identification of Corporate Distress in UK Industrials: A Conditional Probability Analysis Approach, Applied Financial Economics, 14(2), 73-82.
Maddala, G., 1983, Limited-dependent and qualitative variables in econometrics, Cambridge University Press, Cambridge.
Manski, C. and McFadden, D., 1981, Alternative estimators and sample designs for discrete choice analysis, in structural analysis of discrete data and econometric applications, MIT Press, London.
Mays, E., 2001, The basics of scorecard development and validation, handbook of credit scoring, 5, 89-106.
McFadden, D., 1974, Conditional logit analysis of qualitative choice behaviour, in Frontiers in Econometrics (Ed.), P. Zaremba, Academic Press, New York.
Ohlson, J., 1980, Financial ratios and the probabilistic prediction of bankruptcy, Journal of Accounting Research, 18, 109–131.
Palepu, K., 1986, Predicting takeover targets: a methodological and empirical analysis, Journal of Accounting and Economics,8, 3–35.
Robert, B. Avery, Paul, S. Calem and Glenn B. Canner, 2004, Consumer credit scoring:Do situational circumstances matter?, Journal of Banking & Finance, 28, 835–856.
Ryota, Tomioka, Kazuyuki, Aihara1 and Klaus-Robert, Muller, 2007, Logistic regression for single trial EEG classification, Advances in Neural Information Processing Systems.
Steenackers, A. and Goovaerts, M.J., 1989, A credit scoring model for personal loans, Insurance Mathematics Economics, 31-34.
Tian-Shyug, Lee ,Chih-Chou, Chiu, Yu-Chao, Chou and Chi-Jie, Lu, 2006, Mining the customer credit using classification and regression tree and multivariate adaptive regression splines, Computational Statistics and Data Analysis, 50(4), 1113-1130.
Thomas, Lyn C., 2000, A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers, International Journal of Forecasting, 16, 149–172.
網路資料
1.中華民國儲蓄互助協會網站,http://www.culroc.org.tw/。
2.行政院主計處,http://www.dgbas.gov.tw/。