跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宗諺
研究生(外文):Tsung-Yen Tsai
論文名稱:12位元500百萬赫芝電流式互補式金氧化半導體
論文名稱(外文):A 12-bit 500-MSamples/s Current-Steering CMOS D/A Converter
指導教授:洪崇智
指導教授(外文):Chung-Chih Hung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:63
中文關鍵詞:數位類比轉換器
外文關鍵詞:DAC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
高速類比數位轉換器和數位類比轉換器是目前高效能系統中不可獲缺的主要電路。高速數位類比轉換器在設計上,需要考慮如何將電路不匹配所造成的靜態和動態的誤差如DNL、INL 和SFDR 等誤差降低,以增加電路的解析度。
本論文設計實現一個12 位元500MHz 的數位類比轉換器,主要著重在SFDR 的設計,在數位類比轉換器電路的實現,切換電流源式是一個很好的實現方法。在編碼方面,由於考量到電路的線性度表現,還有晶片面積的大小,所以採用低位元及高位元不同的編碼;低位元採用二進位權重,高位元採用溫度計編碼。除此之外,為了增進數位類比轉換器的動態效能及提高解析度與元件間的匹配,分別使用了抑制突波的拴鎖器和特殊的佈局,來增加數位類比轉換器的效能。整個電路利用電流源的切換,已達到較高的速度,電流源利用PMOS 來達成,以降低本身電路的flick noise 及substrate 的干擾。同時也考量了在佈局繞線時產生的寄生電容,所造成速度還有信號不同步的效應。這個數位類比轉換器採用TSMC 0.18 μm 1P6M mixedsignal CMOS 製程來實現,整體晶片的核心面積為1.615 mm2,加入PADs之後為2.896 mm2。
Digital-To-Analog converters are essential components of modern applications, such as digital signal synthesis, video signal processing, and both wired and wireless transmitters.For data converters used in communications applications, the integral nonlinearity (INL) and
differential nonlinearity (DNL) are not sufficient to characterize the performance. It is more convenient to characterize the performance in the frequency domain using measures as the spurious-free dynamic range (SFDR).
The major target specification for SFDR of this paper, a 12-bit 500-MSample/s D/A converter, is 60 dB for signal frequencies up to 170 MHz. An additional design goal was to
derive maximum benefit from this relatively advanced technology. This architecture is divided into a coarse sub-DAC and a binary-weighted fine sub-DAC. The differential
switches of current sources are controlled by deglitch
latch. The routing complexity and parasitic capacitance have to be considered for speed and signal synchronization. A 12-bit 500-MSample/s current-steering D/A converter integrated in a TSMC 0.18μm CMOS technology is presented. It is based on a current steering doubly segmented 8 + 4 architectureand requires no trimming, no calibration, or dynamic averaging. The increased switching noise associated with a high degree of segmentation has been reduced by a new latch. The measure resultant shows that with the signal frequency of 34.33 MHz at the update rate of 100 MHz, the SFDR is 32 dB. The differential nonlinearity and integral nonlinearity are below 3.3 and 5.4 least significant bits (LSB’s), respectively. The converter consumers a total power of 128 mW and it’s active area is 1.615 mm2.
Abstract (Chinese) I
Abstract (English) II
Acknowledgment IV
Table of Contents V
List of Figures VII
List of Tables X
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Organization 2
Chapter 2. Digital-to-Analog Converter Architecture 3
2.1 Ideal D/A converter 3
2.2 Static Performance of DACs 4
2.3 Dynamic Performance of DACs 7
2.4 Charge Redistribution DAC 9
2.5 R-2R Ladder DAC 11
2.6 Binary Weighted Current-Steering DAC 12
2.7 Thermometer Coded DAC Architecture 14
2.8 Hybrid DAC Architecture 15
2.9 Summary 17
Chapter 3. Nonidealities in Current-Steering DAC 18
3.1 Finite output impedance of current source 19
3.2 Current Source Mismatch 25
3.2.1 Random Error 25
3.2.2 Systematic Error 27
3.3 Nonidealities Due to Switching in the Current Cells 31
3.4 Clock Jitter 33
3.5 Summary 34
Chapter 4. DAC Circuit Design 35
4.1 The Architecture of DAC 35
4.2 Digital Circuits 38
4.2.1 Thermometer decoder 39
4.2.2 High speed latch 40
4.3 Analog Circuits 42
4.3.1 Implementation of Switch Unit Current Cell 43
4.3.2 Reference Current Generation 45
4.4 Layout 47
4.5 Summary 51
Chapter 5. Simulation and Measurement Results 52
5.1 Simulation results 52
5.2 Test Circuits 55
5.3 Measurement Results 57
Chapter 6. Conclusions and Future Work 61
Reference 62
[1] Farzen K., Johns D.A.,“A power-efficient architecture for high-speed D/A Converters,”Circuits and System, 2003. ISCAS ’03. Proceedings of the 2003 International Symposium on, Volume”1,25-28 May 2003 Pages: I-897 – I-900 vol.1.
[2] Mikael Gustavsson, J Jacob Wikner and Nianziong Nick Tan,“CMOS Data Converters for communications,” Kluwer Academic Publishers, Boston,2000.
[3] J. Bastos, M. Steyaert, and W. Sansen,“A high yield 12-bit 250-MS/s CMOS D/A converter,”in Proc. IEEE 1996 CICC, May 1996, pp. 431-434.
[4] A. R. Bugeja, B.-S. Song, P. L. Rakers, and S. F. Gilling,“A 14b 100 MSample/s CMOS DAC designed for spectral performance,”in Proc. IEEE1999 ISSCC, Feb. 1999, pp.148-149.
[5] C-H. Lin and K. Bult,“A 10b 500MSamples/s CMOS DAC in 0.6mm2,”IEEE J.Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998.
[6] J. Bastos, A. Marques, M. Steyaert and W. Sansen,“A 12-bit intrinsic accuracy high-speed CMOS DAC,”IEEE J.Solid-State Circuits, vol. 33, pp. 1959-1968, Dec.1998.
[7] A. Van den Bosch, M. Borremans, M. Steyaert, and W. Sansen,“A 12b 500 MSamples/s current-steering CMOS D/A converter,”in IEEE Int. Solid-State Circuits Dig. Tech. Papers, Feb. 2001, pp. 366-367.
[8] G. Van Der Plas, J. Vandenbussche, W. Sansen, M. Steyaert, and G. Gielen,“A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,”IEEE J. Solid-State Circuits, vol. 34,pp. 1708–1717, Dec. 1999.
[9] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa,“A 300-MS/s 14-bit digital-to-analog converter in logic CMOS,”IEEE J. Solid-State Circuits, vol. 38, pp.
734–740, May 2003.
[10] Morteza Vadipour,“Gradient Error Cancellation and Quadratic Error Reduction in Unary and Binary D/A Converters,”IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:
ANALOG AND DIGITAL SIGNAL PROCESSING, vol. 50,no. 12, Dec. 2003.
[11] Kevin O’Sullivan, Chris Gorman, Michael Hennessy, and Vincent Callaghan,“ A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2 ,”IEEE J.
Solid-State Circuits, vol. 39, no. 7, JULY 2004.
[12] Jurgen Deveugele, Geert Van der Plas, Michiel Steyaert,Georges Gielen, and Willy Sansen,“A Gradient-Error and Edge-Effect Tolerant Switching Scheme for
a High-Accuracy DAC,”IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS—I: REGULAR PAPERS, vol. 51, no. 1, JANUARY 2004.
[13] K. Lakshmikumar, R. Hadaway, ad M. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,”IEEE J.
Solid-State Circuits, vol. SC-21, pp. 1057-1066, Dec. 1986.
[14] M. J. M. Pelgrom, A.C. J. Duinmaijer, and A. P. G. Welbers,“Matching properties of MOS transistors,”IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1439,Oct.1989.
[15] Yonghua Cong and Randall L. Geiger,“A 1.5-V 14-Bit 100-MS/s Self-Calibrated DAC ,”IEEE J. Solid-State Circuits, vol. 38,no. 12, Dec. 2003.
[16] Mika P. Tiilikainen,“A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,”IEEE J.Solid-State Circuits, vol. 36, no. 7, JULY 2001.
[17] Alex R. Bugeja, and Bang-Sup Song,“A Self-Trimming 14-b 100-MS/s CMOS DAC,”IEEE J. Solid-State circuits, vol. 35, pp. 1841-1852, Dec. 2000.
[18] Behzad Razavi,“Design of Analog CMOS Integrated Circuit Design,”McGraw-Hill,2001.
[19] John W. Harris and Horst Stocker.,“Handbook of mathematics and computational science,” New York ,Springer,1998.
[20] J Ronald L. Graham, Donald E. Knuth and Oren Patashnik.,“Concrete mathematics /a foundation for computer science,” Addison-Wesley,1994.
[21] Shu-Yuan Chin and Chung-Yu Wu,“A 10-b 125-MHz CMOS Digital-to-Analog Converter (DAC) with Threshold-Voltage Compensated Current Sources,”IEEE J. Solid State Circuits, vol. 29, pp. 1374-1380, Nov. 1994.
[22] Behzad Razavi,“Principles of Data Conversion System Design,”NJ:IEEE Press,1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top