跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳英璟
研究生(外文):Ying-Ching Chen
論文名稱:結合除霧技術與波長能量補償之水下影像強化演算法
論文名稱(外文):Underwater image enhancement: Using WavelengthCompensation and Image Dehazing (WCID)
指導教授:蔣依吾蔣依吾引用關係
指導教授(外文):John Y. Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:87
中文關鍵詞:波長能量補償影像除霧水下影像超解析度
外文關鍵詞:Super ResolutionWavelength CompensationImage DehazingUnderwater Image
相關次數:
  • 被引用被引用:0
  • 點閱點閱:788
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
色散及色偏現象為造成水下攝影失真最主要的兩個原因,其中色散現象為物
體反射光線經水中粒子吸收與多次漫射所造成,色散現象會對影像產生能見度與
對比降低的影響;色偏現象則是光線於水中傳播時,因不同波長具相異之能量衰
減程度,而令水下環境呈現偏藍色調。
本文針對水下影像之色散與色偏失真提出結合除霧演算法及波長能量補償之
水下影像強化演算法,首先以Dark Channel Prior 估測物體至相機距離並產生物體
至相機距離深度圖(Depth Map),接著以影像前景與背景之亮度差值來判斷影像拍
攝時是否存在人造光源照射。於移除人造光源的影響後,使用除霧演算法移除色
散造成之霧化效應,再以水下背景光之各波長能量剩餘比率估測拍攝場景之水下
深度,最後根據各波長能量衰減進行逆向補償,以還原影像之色偏失真。此外超
解析度影像(Super-Resolution)可呈現較多的影像細節,此為低解析度水下影像處理
時相當重要且不可或缺的技術之一,本文結合以梯度為基礎的超解析度演算法
(Gradient-Base)及反投影疊代法(IBP)提出雞尾酒式(Cocktail)超解析度演算法,配合
雙邊濾波器消除影像邊緣之棋盤效應及震鈴效應以提升影像品質。
將自 Youtube 網站下載之各種解析度之水下影片分別以WCID、直方圖等化
及傳統除霧演算法處理,比較後發現WCID 演算法具有同時解決色散與色偏之能
力且可有效提高影像能見度與色彩保真度,配合超解析度影像的處理可使水下拍
攝影像及影片均獲得良好視覺效果如呈現於空氣中觀賞之原有色調,清晰度及細
節保真度。
Light scattering and color shift are two major sources of distortion for underwater
photography. Light scattering is caused by light incident on objects reflected and
deflected multiple times by particles present in the water before reaching the camera.
This in turn lowers the visibility and contrast of the image captured. Color shift
corresponds to the varying degrees of attenuation encountered by light traveling in the
water with different wavelengths, rendering ambient underwater environments
dominated by bluish tone.
This paper proposes a novel approach to enhance underwater images by a
dehazing algorithm with wavelength compensation. Once the depth map, i.e., distances
between the objects and the camera, is estimated by dark channel prior, the light
intensities of foreground and background are compared to determine whether an
artificial light source is employed during image capturing process. After compensating
the effect of artifical light, the haze phenomenon from light scattering is removed by the
dehazing algorithm. Next, estimation of the image scene depth according to the residual
energy ratios of different wavelengths in the background is performed. Based on the
amount of attenuation corresponding to each light wavelength, color shift compensation
is conducted to restore color balance. A Super-Rsolution image can offer more details
that must be important and necessary in low resolution underwater image. In this paper
combine Gradient-Base Super Resolution and Iterative Back-Projection (IBP) to
propose Cocktail Super Resolution algorithm, with the bilateral filter to remove the
chessboard effect and ringing effect along image edges, and improve the image quality.
The underwater videos with diversified resolution downloaded from the Youtube
website are processed by employing WCID, histogram equalization, and a traditional
dehazing algorithm, respectively. Test results demonstrate that videos with significantly
enhanced visibility and superior color fidelity are obtained by the WCID proposed.
摘要 ......................................................................................................................iv
Abstract .......................................................................................................................v
目錄.................................................................................................................... vii
圖目錄......................................................................................................................ix
表目錄......................................................................................................................xi
第一章 簡介...............................................................................................................1
1.1 影像霧化...................................................................................................... 2
1.2 色偏現象...................................................................................................... 4
1.3 超解析度...................................................................................................... 6
1.4 研究總述...................................................................................................... 7
第二章 相關研究.......................................................................................................8
2.1 基於光學物理模型之除霧方法.................................................................. 8
2.2 影像除霧技術.............................................................................................. 9
2.3 移除影像色偏現象.................................................................................... 17
2.4 傳統內插放大法與超解析度演算法........................................................ 18
第三章 理論基礎.....................................................................................................24
3.1 Dark Channel Prior..................................................................................... 24
3.2 Image matting............................................................................................. 27
3.3 Connected Component Labeling ................................................................ 31
3.4 Simple Linear Regression........................................................................... 32
3.5 Jacobi Iterative............................................................................................ 33
3.6 YCbCr 色彩空間........................................................................................ 35
3.7 類神經網路(Artificial Neural Network) .................................................... 36
3.8 雙向濾波器(Bilateral Filter) ...................................................................... 39
3.9 最小邊緣路徑法(Minimum Error Boundary Cut) .................................... 40
第四章 研究方法.....................................................................................................41
4.1 Algorithm ................................................................................................... 42
4.2 Distance between the camera and the object: d(x) ..................................... 43
4.3 Laplacian matrix matting using guided filter ............................................. 45
viii
4.4 Removal of the artificial light source L...................................................... 48
4.5 Underwater depth at the top of the photo scene: D .................................... 51
4.6 Image depth range R................................................................................... 53
4.7 Super-Resolution ........................................................................................ 54
第五章 實驗結果.....................................................................................................59
第六章 結論與未來工作.........................................................................................70
參考文獻.....................................................................................................................71
[1]. K. Lebart, C. Smith, E. Trucco, and D. M. Lane, “Automatic indexing of
underwater survey video: algorithm and benchmarking method,” IEEE J. Ocean.
Eng., Vol. 28, No. 4, pp. 673 - 686, 2003.
[2]. J. Ronald Zaneveld and W. Pegau, “Robust underwater visibility parameter,” Opt.
Express, Vol. 11, pp. 2997-3009, 2003.
[3]. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of
classical waves: microscopy, mesoscopy and diffusion,” Reviews of Modern
Physics, Vol. 71, No. 1, pp. 313-371, 1999.
[4]. S. Shwartz, E. Namer, Y. Y. and Schechner, “Blind haze separation,” Proc. of
IEEE CVPR, Vol. 2, pp. 1984-1991, 2006.
[5]. J. T. Houghton, “The Physics of Atmospheres,” Chapter 2, 2nd ed. Cambridge
University Press, 2001.
[6]. Luz Abril Torres-Méndez and Gregory Dudek, “Color Correction of Underwater
Images for Aquatic Robot Inspection,” Lecture Notes in Computer Science, No.
3757, pp. 60-73, 2005.
[7]. McFarland, W. N, “Light in the sea—correlations with behaviors of fishes and
invertebrates,” American Scientist Zoology, Vol. 26, pp. 389-401, 1986.
[8]. Seibert Q. Duntley, “Light in the Sea,” Journal of the Optical Society of America,
Vol. 53, Issue 2, pp. 214-233, 1963.
[9]. N. G. Jerlov, “Optical Oceanography,” Elsevier Publishing Company, Amsterdam,
1968.
[10]. Conventional Television Systems, ITU-R standard BT470-6, 1970-1998.
[11]. High Definition TV Analog Video Interface, EIA standard 770.3-A, 2000.
[12]. B. McGlamery, “A computer model for underwater camera system,” Proc. of
SPIE, vol. 208, pp. 221–231, 1979.
[13]. S. Jaffe, “Computer modeling and the design of optimal underwater imaging
systems,” IEEE J. Ocean. Eng, Vol. 15, no. 2, pp. 101-111, 1990.
[14]. Y. Y. Schechner and N. Karpel, “Clean Underwater Vision,” Proc. of IEEE
CVPR, Vol. 1, pp. 536-543, 2004.
[15]. R. Tan, “Visibility in bad weather from a single image,” Proc. of IEEE CVPR,
Vol. 1, pp. 1-8, 2008.
[16]. R. Fattal, “Single Image Dehazing,” Intl. Conf. on Computer Graphics and
Interactive Technique, No. 72, Pages 1-9, 2008.
[17]. K. Iqbal, R. Abdul Salam, A. Osman, and A. Zawawi Talib, “Underwater image
enhancement using an integrated color model,” Intl. Journal of Computer
Science, Vol. 34, pp. 2-12, 2007.
[18]. R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,”
IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 6,
pp. 1153-1160, Dec.1981.
[19]. H. S. Hou and H. C. Andrews, “Cubic Splines For Image Interpolation and
Digital Filtering,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol.
ASSP-26, No. 6, pp. 508-517, Dec. 1978.
[20]. W. K. Pratt, Digital Image Processing, 2nd Edition, New York: Wiley, 1991.
[21]. M. Lehmann, Claudia Gonner and Klaus Spitzer, “Addendum: B-spline
Interpolation in Medical Image Processing,” IEEE Trans. on Medical Image,
vol. 20, pp. 660-665, July 2001.
[22] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd Edition,
Prentice-Hall, Upper Saddle River, New Jersey, U.S.A., 2002.
[23]. W.T. Freeman and E.C. Pasztor, “Learning to estimate scenes from images,”
Advances in Neural Information Processing Systems, vol. 11, pp.775-781, Nov.
1999.
[24]. J. Yang, J. Wright, T. Huang, and Y. Ma, “Image Super-Resolution Via Sparse
Representation,” IEEE Transactions on Signal Processing, Vol. 19, No. 11, pp.
2861-2873, 2010.
[25]. Xiaoguang Li, Kin Man Lam, Guoping Qiu, Lansun Shen and Suyu Wang,
“Example-based image super-resolution with class-specific predictors,” Journal of
Visual Communication and Image Representation, vol. 20, pp. 312-322,2009.
[26] W.T. Freeman and E.C. Pasztor, “Markov networks for super-resolution,” Proc. of
the 34th Conference on Information Sciences and Systems, Princeton, New Jersey,
U.S.A, Mar. 2000.
[27]. R. Y. Tsai and T. S. Huang, “Multiframe Image Restoration and Registration,”
Advances in Computer Vision and Image Processing(R. Y. Tsai, T. S. Huang, Eds.),
vol. 1, pp. 317-339, JAI Press, London, 1984.
[28]. M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP:
Graphical Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991.
[29]. S. Farsiu, D. Robinson, M. Elad and P. Milanfar, “Fast and Robust Multi-Frame
Super-Resolution,” IEEE Trans. on Image Processing, Vol. 13, No. 10,
pp.1327-1344, 2004.
[30]. C. Papathanassiou, M. Petrou, “Super resolution: an overview”, Proc. of
IGARSS’05, Vol. 8, pp.5655 -5658, July 2005
[31]. C. C. Hsieh, Y. P. Huang, Y. Y. chen and C. S. Fuh, “Video Super-Resolution
by Motion Compensated Iterative Back-Projection Approach”, Journal of
Information Science and Engineering, Vol. 27 No. 3, pp. 1107-1122, 2011.
[32]. 劉國慶,『利用磁振造影的血流灌注影像分割技術來評估腦部疾病』,國
立陽明大學放射醫學科學研究所碩士論文(2002)。
[33]. W. T. Freeman, T. R. Johes and E. C. Pasztor, “Example-Based Super
Resolution,” IEEE Computer Graphics and Application, Vol. 22, NO. 2,
pp.56-65, 2002.
[34]. R. Kutka, “Reconstruction of Correct 3-D Perception on Screens Views at
Different Distances,” IEEE Transactions on Communications, Vol. 42, No. 1,
pp. 29-33, 1994.
[35]. Kaiming He, Jian Sun and Xiaoou Tang, “Single image haze removal using
Dark Channel Prior,” Proc. of IEEE CVPR, Vol. 1, pp. 1956-1963, 2009.
[36]. A. Berman, P. Vlahos, and A. Dadourian, “Comprehensive Method for
Removing from an Image the Background Surrounding a Selected Object,” U.S.
Patent 6134345, 2000.
[37]. Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson matting.
ACM Transactions on Graphics, Vol. 23 No. 3, pp. 315-321, 2004
[38]. A. Levin, D. Lischinski, and Y. Weiss, “A closed form solution to natural image
matting,” Proc. of IEEE CVPR, Vol. 1, pp. 61-68, 2006.
[39]. 鍾國亮,『影像處理與電腦視覺』,東華書局2002,ISBN: 9574831418。
[40]. 管中閔,『統計學:觀念與方法』,華泰文化出版社2005,ISBN: 9576095328。
[41]. Howard Anton, Elementary Linear Algebra 9nd edition, 2006. (wliey ISBN:
047166960)
[42]. Charles Poynton, Digital Video and HDTV: Algorithms and Interfaces 1st
edition, 2003. (Morgan Kaufmann ISBN: 1558607927)
[43]. 維基百科: http://zh.wikipedia.org/zh-tw/.
[44]. 王進德,『類神經網路與模糊控制理論控制入門』,全華科技圖書股份有限公司 2007,ISBN: 9572155946。
[45]. 葉怡成,『類神經網路模式與應用實作』第九版,儒林書局2009,ISBN:
9789574998630。
[46]. C. Tomasi and R. Mandchi, “Bilateral filtering for gray and color images, ” Proc.
of IEEE Computer Vision, pp. 836-846, 1998.
[47]. A. Efros and T. Leung, “Texture Synthesis by Non-parametric Sampling.” Proc
of IEEE Computer Vision, Vol. 2, pp. 1033-1038, 1999.
[48]. Kaiming He, Jian Sun and Xiaoou Tang, “Guided Image Filtering,” Proc. of
European conference on Computer vision,Vol. 1, pp. 1-14, 2010.
[49]. T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro, “Motion Compensated
interframe coding for video conferencing,” proc. of Nat. Telcommun, pp.
5.3.1-5.3.5, 1981.
[50]. J. L. Wu and J. C. Wang, “A new single image super resolution method using
gradient operators and machine learning, ” proc. of CVGIP, pp. 449-456, 2010.
[51]. http://www.youtube.com/user/bubblevision.
[52]. Liu Chao and Meng Wang, “Removal of Water Scattering,” Intl. conf. on
Computer Engineering and Technology, Vol. 2, pp. 35-39, 2010.
[53]. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of
classical waves: microscopy, mesoscopy and diffusion,” Reviews of Modern
Physics, Vol. 71, No. 1, pp. 313-371, 1999.
[54]. E. Trucco and A.T. Olmos-Antillon, “Self-Tuning Underwater Image
Restoration,” IEEE J. Ocean. Eng., Vol. 31, pp. 511-519, 2006.
[55]. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure
by polarization analysis,” IEEE J. Ocean. Eng., Vol. 30, pp. 570-587, 2005.
[56]. Junku Yuh and Michael West, “Underwater Robotics,” Advanced Robotic, Vol.15, No. 5, pp. 609-639, 2001.
[57]. A. Yamashita, M. Fujii and T. Kaneko, “Color Registration of Underwater
Image for Underwater Sensing with Consideration of Light attenuation,” Intl.
conf. on Robotics and Automation, pp. 4570-4575, 2007.
[58]. Weilin Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, J. L. Forand,
“Automated underwater image restoration and retrieval of related optical
properties,” Proc. of IGARSS, Vol. 1, pp. 1889-1892, 2007.
[59]. Raimondo Schettini and Silvia Corchs, “Underwater Image Processing: State of
the Art of Restoration and Image Enhancement Methods,” Journal of EURASIP
on Advances in Signal Processing, Vol. 2010, pp. 1-14, 2010.
[60]. S. Dai, M. Han, Y. Wu and Y. Gong, “Bilateral Back-Projection for Single
Image Super Resolution,” Proc. of IEEE Multimedia and Expo, pp. 1039 -1042,
2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top