跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳憶加
研究生(外文):Yi-Chia Chen
論文名稱:吲哚苯並咪唑雙聚體及咔唑苯並咪唑雙聚體衍生物之合成、性質探討以及在有機發光二極體之應用
論文名稱(外文):Synthesis and Characterization of Bis(indole-N-benzimidazole) and Bis(carbazole-N-benzimidazole) and The Applications in Organic Light Emitting Diodes
指導教授:梁文傑梁文傑引用關係
指導教授(外文):Man-kit Leung
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:164
中文關鍵詞:苯並咪唑咔唑吲哚雙偶極主體發光材料有機發光二極體(OLED)
外文關鍵詞:benzimidazolecarbazoleindolebipolarOLEDshost materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用吲哚苯並咪唑雙聚體(bis(indole-N-benzimidazole)) 及咔唑苯並咪唑雙聚體(bis(carbazole-N-benzimidazole)) 衍生物體為有機發光二極體中的主體材料,其中苯並咪唑具有促進電子傳遞及注入之特性,而咔唑本身則具有較高的三重態能階同時也具備良好的電洞傳導性質,因此選用此兩種分子做進一步的探討,而在之前的研究顯示,此兩種化合物利用碳氮鍵結相較於碳碳鍵結,碳氮鍵結可以使電子能有更佳分散效果,增加三重態能階,因此我們採用碳氮鍵結的方式來合成此系列化合物;另外,近年來吲哚在有機發光二極體之材料中也備受討論,因其同樣具有好的電洞傳遞能力以及高的三重態能階,因此本篇論文分為兩系列來討論,以這兩種傳電洞之材料在苯並咪唑(benzimidazole) 之不同位置做取代,討論位置對於整體材料之影響,同時增加化合物之分子量來提高熱穩定性。我們利用 X-ray 單晶繞射探討分子的排列及堆疊;以紫外-可見光光譜(UV-Vis)、螢光放射光譜(FL)、磷光放射光譜(Ph) 進行光物理性質探討;以循環伏安法(CV)、差式脈波伏安法(DPV) 進行電化學性質探討,並將所得之化合物作為主體發光材料摻混FIrpic 應用在藍色磷光有機發光二極體之元件製作上,而在元件的表現上,以化合物3dCBZB 為主體光材料的元件效率最佳,在電賀密度為20 mA/cm2 時的驅動電壓為6.70 V;於操作電壓為3.5V 時可達最大亮度16750 cd/m2、最大發光效率47.15 cd/A;於操作電壓為3V 時可達最大發光功率為46.57lm/W、最大外部量子效率達21.10 %。
In this thesis, we synthesized two series of compounds―
bis(indole-N-benzimidazole) and bis(carbazole-N-benzimidazole) as the host materials in OLED. In this bipolar system, carbazole and indole groups which have high triplet energy and good hole-transporting ability as the hole-transporting moiety, and benzimidazole as the electron-transporting moiety. Directly connect two moieties and compare the effect of different substituted position. In addition, we increase molecular weights to improve their thermal stability. We have been performed Ultraviolete-visible (UV-vis) spectral, photoluminescence (PL) spectral, cyclic voltammetry (CV), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements to investigate the photophysical properties, thermal properties and electrochemical properties of these materials. The results show that all these host materials have excellent thermal stability and maintain high triplet energy.The blue PhOLED device used this thesis compound as the host material and the compound 3dCBZB existed the best performance than other compounds in the device dopant 18% FIrpic. It exhibited the turn-on voltage at 20 mA/cm2 was 6.70V, maximum luminance value (16750 cd/m2), the maximum current efficiency (47.15 cd/A), the maximum power efficiency (46.57 lm/W), and the maximum external quantum efficiency (20.01 %).
目錄
中文摘要................................................................................................................ IV
Abstract ...................................................................................................................V
化合物結構式與編號............................................................................................ VI
圖目錄..................................................................................................................VIII
表目錄.................................................................................................................... XI
流程目錄...............................................................................................................XII
第一章緒論 .......................................................................................................1
1.1 前言 .............................................................................................................. 1
1.2 有機發光二極體起源歷史.......................................................................... 2
1.3 有機發光二極體工作原理.......................................................................... 3
1.3.1 發光原理.......................................................................................... 3
1.3.2 元件架構.......................................................................................... 5
1.3.3 元件之工作原理.............................................................................. 6
1.4 主客摻混磷光發光系統.............................................................................. 7
1.4.1 電激磷光.......................................................................................... 7
1.4.2 主客摻混發光系統.......................................................................... 8
1.4.3 能量之淬熄...................................................................................... 9
1.5 有機發光二極體之材料............................................................................ 10
1.5.1 陽極材料........................................................................................ 10
1.5.2 陰極材料.........................................................................................11
1.5.3 電洞注入材料.................................................................................11
1.5.4 電洞傳輸材料................................................................................ 12
1.5.5 電子注入材料................................................................................ 13
1.5.6 電子傳導材料................................................................................ 14
1.5.7 主發光體材料................................................................................ 15
1.5.8 客體發光材料................................................................................ 16
1.6 近期藍色有機發光二極體發展................................................................ 17
第二章結果與討論.........................................................................................20
2.1 分子設計.................................................................................................... 20
2.2 合成策略與方法........................................................................................ 24
2.3 X-Ray 晶體結構分析................................................................................ 28
2.4 熱性質分析................................................................................................ 32
2.5 光物理性質分析........................................................................................ 35
2.6 電化學性質分析........................................................................................ 43
2.7 能量轉移.................................................................................................... 49
2.8 有機電激發光元件表現............................................................................ 53
第三章結論 ...........................................................................................................67
4.1 實驗儀器與試劑............................................................................................. 68
4.1.1 儀器部分.............................................................................................. 68
4.1.2 試劑與溶劑.......................................................................................... 69
4.2 合成步驟......................................................................................................... 70
參考文獻.................................................................................................................88
附錄一化合物 DSC 及TGA 圖..........................................................................95
附錄二化合物 X-ray 晶體參數表、鍵長與鍵角數據.......................................98
附錄三化合物之氫核磁共振光譜與碳核磁共振光譜.....................................137
參考文獻
1. 陳金鑫; 黃孝文., OLED 有機電致發光材料與器件. 2007.
2. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
3. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Applied Physics Letters 1962, 1, 82-83.
4. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. Journal of Applied Physics 1989, 65 (9), 3610-3616.
5. Burroughes, J. H.; Bardley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539-541.
6. Chihaya, A.; Shizuo, T.; Tetsuo, T.; Shogo, S., Organic Electroluminescent Device with a Tree-Layer Structure. Japanese Journal of Applied Physics 1988, 27 (4A), L713.
7. Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic
electroluminescent devices. Nature 1998, 395 (6698), 151-154.
8. Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue organic electrophosphorescence using exothermic host-guest energy transfer. Applied Physics Letters 2003, 82, 2422-2424.
9. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Improved energy transfer in electrophosphorescent devices. Applied Physics Letters 1999, 74, 442-444.
10. Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E., Efficient deep-blue organic electrophosphorescence by guest charge trapping. Applied Physics Letters 2003, 83, 3818-3820.
11. Jeon, W. S.; Kim, S. Y.; Pode, R.; Jang, J.; Kwon, J. H., Ideal host and guest system in phosphorescent OLEDs. Organic Electronics 2009, 10 (2), 240-246.
12. Suzuki, H.; Hoshino, S., Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes. Journal of Applied Physics 1996, 79, 8816.
13. Dexter, D. L., A Theory of Sensitized Luminescence in Solids. Journal of Chemical Physics 1953, 21 (5), 836-850. 14. Förster, T., 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 1959, 27, 7-17.
15. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B 2000, 62 (16), 10967-10977.
16. Singh-Rachford, T. N.; Castellano, F. N., Photon upconversion based on sensitized triplet-triplet annihilation. Coordination Chemistry Reviews 2010, 254, 2560-2573.
17. Reineke, S.; Walzer, K.; Leo, K., Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Physical Review B 2007, 75 (12).
18. Ishida, T.; Kobayashi, H.; Nakato, Y., Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. Journal of Applied Physics 1993, 73, 4344-4350.
19. Kim, J. S.; Granström, M,; Friend, R. H.; Johansson, N.; Salaneck, W. R.; Daik, R.; Feast, W. J.; Cacialli, F., Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the devices performance. Journal of Applied Physics 1998, 84 (12), 6859-6870.
20. So, S. K.; Choi, W. K.; Cheng, C. H.; Leung, L. M.; Kwong, C. F., Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics 1999, 68, 447-450.
21. Mason, M. G.; Hung, L. S.; Tang, C. W.; Lee, S. T.; Wong, K. W.; Wang, M., Characterization of treated indium-tin-oxide surfaces used in electroluminescent
devices. Journal of Applied Physics 1999, 86, 1688-1692.
22. Van Slyke, S. A.; Chen, C. H.; Tang, C. W., Organic electroluminescent devices with improved stability. Applied Physics Letters 1996, 69, 2160-2162.
23. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecular, 4,4’,4’’-tris(3-methylphenylphenylamino) triphenylamine, as a hole transport material. Applied Physics Letters 1994, 65 (7), 807-809.
24. Kraft, A.; Grimsdale, A. C.; Holmes,A. B., Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. Angewandte Chemie International Edition 1998, 37 (4), 402-428.
25. Van Slyke, S. A.; Tang, C. W., US Patent 5 1991, 061, 569.
26. Shirota, Y., Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry 2000, 10 (1), 1-25.
27. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices 1997, 44 (8), 1245-1248.
28. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physucs Letters 1989, 55 (15), 1489-1491.
29. Junji, K.; Chikau, O.; Kenichi, H.; Katsuro, O.; Katsutoshi, N., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics 1993, 32 (7A), L917.
30. Hoshini, S.; Ebata, K.; Furukawa, K., Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure. Journal of Applied Physics 2000, 87, 1968-1973.
31. Shi, J.; Tang, C. W.; Chen, C. H., US Patent 5 1997, 646, 948.
32. Leung, M. K.; Yang, C. C.; Lee, J. H.; Tsai, H. H.; Lin, C. F.; Huang, C. Y.; Su, Y. O.; Chiu, C. F., The Unusual Electrochemical and Photophysical Behavior of 2,2’-Bis(1,3,4-oxadiazole-2-yl)biphenyls, Effective Electron Transport Host for Phosphorescent Organic Light Emitting Diodes. Organic Letters 2007, 9 (2), 235-238.
33. Lee, J. H.; Tsai, H. H.; Leung, M. K.; Yang, C. C.; Chao, C. C., Phosphorescent organic light-emitting device with an ambipolar oxadiazole host. Applied Physics Letters 2007, 90 (24), 243501.
34. Lee, J. H.; Huang, C. L.; Hsiao, C. H.; Leung, M. K.; Yang, C. C.; Chao, C. C., Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters 2009, 94 (22), 223301.
35. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082-2084.
36. Kim, S. M.; Kim, J. H.; Jeon, S. K.; Lee, J. Y., Molecular design of host materials for stable blue phosphorescent organic light-emitting diodes. Dye and Pigments 2016, 125, 274-281.
37. Seo, J. A.; Jeon, S. K.; Lee, J. Y., Acridine derived stable host material for long lifetime blue phosphorescent organic light-emitting diodes. Organic Electronics 2016, 34, 33-37.
38. Lv, X.; Wong B.; Tan, J.; Huang, Z.; Zhang, Q.; Xiang, S.; Liu, W.; Zhuang, S.; Wang, L., Constructing diazacarbazole-bicarbazole bipolar hybrids by optimizing the linker group for high efficiency, low roll off electrophosphorescent devices. Dye and Pigments 2017, 136, 54-62.
39. Gudeika, D.; Norvaisa, K.; Stainslovaityte, E.; Bezvikonnyi, O.; Volyniuk, D.; Turyk, P.; Hladka, I.; Yashchuk, V. M.; Grazulevicius, J. V., High-triplet-energy derivatives of indole and carbazole as hosts for blue phosphorescent organic light-emitting diodes. Dye and Pigments 2017, 139, 487-497.
40. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-8.
41. Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C., Sky-Blue Organic Light Emitting Diodes with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Advanced Materials 2016, 28 (32), 6976-6983.
42. Huang, H.; Yang, X.; Pan, B.; Wang, L.; Chen, J.; Ma, D.; Yang, C., Benzimidazole-carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications. Journal of Materials Chemistry 2012, 22 (26), 13223.
43. Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D., A simple carbazole-N-benzimidazole bipolar host material for highly efficient blue and single layer white phosphorescence organic light-emitting diodes. Journal of Materials Chemistry C 2014, 2 (14), 2466.
44. 張書昀, 咔唑與苯並咪唑碳氮連接之雙極性衍生物之合成、性質探討以及在有機發光二極體之應用. 台灣大學, 2016.
45. Dong, Q.; Lian, H.; Gao, Z.; Guo, Z.; Xiang, N.; Zhong, Z.; Guo, H.; Huang, J.; Wong, W. Y., Novel spirofluorene/indole/carbazole-based hole transport materials with high triplet energy for efficient green phosphorescent organic light-emitting diodes. Dye and Pigments 2017, 137, 84-90.
46. Hanan, E. J.; Chan, B. K.; Estrada, A. A.; Anthony, A.; Shore, D. G.; Lyssikatos, J. P., Mild and General One-Pot Reduction and Cyclization of Aromatic and Heteroaromatic 2-Nitroamines to Bicyclic 2H-Imidazole. Synlett 2010, (18), 2759-2764.
47. Tanaka, I.; Tabata, Y.; Tokito, S., Unusual Phosphorescence Characteristic of Ir(ppy)3 in a Solid Matrix at Low Temperatures. Japanese Journal of Applied
Physics 2004, 43, L1601.
48. Goushi, K.; Kwong, R.; Brown, J. J.; Sasabe, H.; Adachi, C., Triplet exciton confinement and unconfinement by adjacent hole-transport layer. Japanese Journal of Applied Physics 2004, 95, 7798.
49. Huang, J. J.; Leung, M. K.; Chiu, T. L.; Chuang, Y. T.; Chou, P. T.; Hung, Y. H., Novel Benzimidazole Derivatives as Electron-Transporting Type Host To Achieve Highly Efficient Sky-Blue Phosphorescent Organic Light-Emitting Diode (PHOLED) Device. Organic Leters 2014, 16 (20), 5398-5401.
50. Dandrade, B.; Datta, S.; Forrest, S.; Djurovich, P.; Polikarpov, E.; Thompson, M., Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Organic Electronics 2005, 6 (1), 11-20.
51. Rausch, A. F.; Thompson, M. E.; Yersin, H., Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy)2(pic) (FIrpic) : Investigations by High-Resolution Optical Spectroscopy. Inorganic Chemistry 2009, 10 (3), 515-520.
52. Hofbeck, T.; Yersin, H., The Triplet State of fac-Ir(ppy)3. Inorganic Chemistry 2010, 49, 9290-9299.
53. He, J.; Liu, H.; Dai, Y.; Qu, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. The Journal of Physical Chemistry C 2009, 113 (16), 6761-6767.
54. Jones II, G.; Jackson W. R.; Choi, C.; Bergmark, W. R., Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. The Journal of Physical Chemistry 1985, 89, 294-300.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 主鏈含咔唑及1,2,4-三氮唑雙極性基團高分子之磷光主發光體材料的合成與鑑定
2. 含硼烷基咔唑雙載子磷光主體材料的改質
3. 具咔唑與苯並咪唑結構之雙極性主體材料應用於高效率藍色磷光有機發光元件
4. 以咔唑及咪唑衍生物作為藍色磷光有機發光二極體主體材料之研究
5. 苯並咪唑化合物之合成、光譜性質分析及以其作為母體材料在高效率藍光有機發光二極體的研究
6. 雙偶極性咔唑衍生物之設計合成及其於有機電致發光元件上之應用
7. 開發新型含苯并咪唑與吲哚架構之配位基應用於鈴木-宮浦偶合反應
8. 1,8號位雙取代之萘衍生物之合成、性質探討
9. 合成及鑑定含氮─磷鍵之二級氧化磷基及其配位之鈀金屬錯合物並應用於Catellani反應形成Carbazole衍生物
10. 二代與三代有機發光二極體材料之設計、合成、鑑定及其元件應用
11. (1) Benzimidazoles的合成研究 (2) 銅金屬催化Indoles的合成研究
12. 應用皮克塔-斯賓格勒反應來合成苯並吡喃融合咔唑衍生物和應用鈀催化及一鍋化的方式薗頭(Sonogashira)氫炔化串聯反應合成4-亞芐基-3,6-二苯基己-2-烯-5-炔醛衍生物
13. 有機發光二極體之雙極性主體材料的設計與合成
14. 雙偶極咔唑化合物之合成、性質探討及其在藍色磷光有機發光二極體上的應用
15. 高扭曲雙極性主體材料在磷光有機發光元件上之應用
 
無相關期刊