|
1.Aktan, F., iNOS-mediated nitric oxide production and its regulation. Life Sci, 2004. 75(6): p. 639-53. 2.Bogdan, C., Nitric oxide and the immune response. Nat Immunol, 2001. 2(10): p. 907-16. 3.Singh, S. and A.K. Gupta, Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies. Cancer Chemother Pharmacol, 2011. 67(6): p. 1211-24. 4.Illi, B., et al., NO sparks off chromatin: tales of a multifaceted epigenetic regulator. Pharmacol Ther, 2009. 123(3): p. 344-52. 5.Fuseler, J.W. and M.T. Valarmathi, Modulation of the migration and differentiation potential of adult bone marrow stromal stem cells by nitric oxide. Biomaterials, 2012. 33(4): p. 1032-43. 6.Pautz, A., et al., Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide, 2010. 23(2): p. 75-93. 7.Petrov, T., et al., Upregulation of iNOS expression and phosphorylation of eIF-2alpha are paralleled by suppression of protein synthesis in rat hypothalamus in a closed head trauma model. J Neurotrauma, 2001. 18(8): p. 799-812. 8.Geoffrey M. Cooper, R.E.H., The Cell: A Molecular Approach, 5th Edition. 9.Kumar, N., et al., Requirement of vimentin filament assembly for beta3-adrenergic receptor activation of ERK MAP kinase and lipolysis. J Biol Chem, 2007. 282(12): p. 9244-50. 10.May, J.A., et al., GPIIb-IIIa antagonists cause rapid disaggregation of platelets pre-treated with cytochalasin D. Evidence that the stability of platelet aggregates depends on normal cytoskeletal assembly. Platelets, 1998. 9(3-4): p. 227-32. 11.Cadet, J.L., The iminodipropionitrile (IDPN)-induced dyskinetic syndrome: behavioral and biochemical pharmacology. Neurosci Biobehav Rev, 1989. 13(1): p. 39-45. 12.Takahashi, N. and B. Ishizuka, The involvement of neurofilament heavy chain phosphorylation in the maturation and degeneration of rat oocytes. Endocrinology, 2012. 153(4): p. 1990-8. 13.Takahashi, N., W. Tarumi, and B. Ishizuka, Acute reproductive toxicity of 3,3''-iminodipropionitrile in female rats. Reprod Toxicol, 2012. 33(1): p. 27-34. 14.Galigniana, M.D., et al., Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton. Mol Endocrinol, 1998. 12(12): p. 1903-13. 15.Feuilloley, M., et al., Effect of the intermediate filament inhibitor IDPN on steroid secretion by frog adrenal glands. J Steroid Biochem, 1988. 30(1-6): p. 465-7. 16.Durham, H.D., The effect of beta,beta''-iminodipropionitrile (IDPN) on cytoskeletal organization in cultured human skin fibroblasts. Cell Biol Int Rep, 1986. 10(8): p. 599-610. 17.Su, Y., D. Kondrikov, and E.R. Block, Cytoskeletal regulation of nitric oxide synthase. Cell Biochem Biophys, 2005. 43(3): p. 439-49. 18.Takemoto, M., et al., Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation, 2002. 106(1): p. 57-62. 19.Witteck, A., et al., Rho protein-mediated changes in the structure of the actin cytoskeleton regulate human inducible NO synthase gene expression. Exp Cell Res, 2003. 287(1): p. 106-15. 20.Su, Y., S.I. Zharikov, and E.R. Block, Microtubule-active agents modify nitric oxide production in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol, 2002. 282(6): p. L1183-9. 21.Kagami, S. and S. Kondo, Beta1-integrins and glomerular injury. J Med Invest, 2004. 51(1-2): p. 1-13. 22.Schreiner, G.F., The mesangial phagocyte and its regulation of contractile cell biology. J Am Soc Nephrol, 1992. 2(10 Suppl): p. S74-82. 23.Ben-Ze''ev, A., Animal cell shape changes and gene expression. Bioessays, 1991. 13(5): p. 207-12. 24.Helfand, B.T., et al., Intermediate filament proteins participate in signal transduction. Trends Cell Biol, 2005. 15(11): p. 568-70. 25.Murakami, M., et al., Cellular components that functionally interact with signaling phospholipase A(2)s. Biochim Biophys Acta, 2000. 1488(1-2): p. 159-66. 26.Meriane, M., et al., Cdc42Hs and Rac1 GTPases induce the collapse of the vimentin intermediate filament network. J Biol Chem, 2000. 275(42): p. 33046-52. 27.Caulin, C., et al., Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol, 2000. 149(1): p. 17-22. 28.Johnson, R.J., et al., Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest, 1991. 87(3): p. 847-58. 29.Muchir, A., W. Wu, and H.J. Worman, Reduced expression of A-type lamins and emerin activates extracellular signal-regulated kinase in cultured cells. Biochim Biophys Acta, 2009. 1792(1): p. 75-81. 30.Webb, J.L., et al., Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun, 2001. 69(10): p. 6391-400. 31.Zeng, C. and A.R. Morrison, Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression. Am J Physiol Cell Physiol, 2001. 281(3): p. C932-40. 32.Marczin, N., et al., Cytoskeleton-dependent activation of the inducible nitric oxide synthase in cultured aortic smooth muscle cells. Br J Pharmacol, 1996. 118(5): p. 1085-94. 33.Marczin, N., et al., Prevention of nitric oxide synthase induction in vascular smooth muscle cells by microtubule depolymerizing agents. Br J Pharmacol, 1993. 109(3): p. 603-5. 34.Liu, B.H., et al., The fungal metabolite, citrinin, inhibits lipopolysaccharide/interferon-gamma-induced nitric oxide production in glomerular mesangial cells. Int Immunopharmacol, 2010. 10(12): p. 1608-15. 35.Tsai, K.D., et al., Differential effects of LY294002 and wortmannin on inducible nitric oxide synthase expression in glomerular mesangial cells. Int Immunopharmacol, 2012. 12(3): p. 471-80. 36.Whitmarsh, A.J. and R.J. Davis, Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl), 1996. 74(10): p. 589-607. 37.Tegeder, I., J. Pfeilschifter, and G. Geisslinger, Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J, 2001. 15(12): p. 2057-72. 38.Bertelli, E., et al., Nestin expression in adult and developing human kidney. J Histochem Cytochem, 2007. 55(4): p. 411-21. 39.Miller, K.J. and H.A. Gonzalez, Serotonin 5-HT2A receptor activation inhibits cytokine-stimulated inducible nitric oxide synthase in C6 glioma cells. Ann N Y Acad Sci, 1998. 861: p. 169-73. 40.Chae, H.S., et al., 5-hydroxytryptophan acts on the mitogen-activated protein kinase extracellular-signal regulated protein kinase pathway to modulate cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 cells. Biol Pharm Bull, 2009. 32(4): p. 553-7. 41.Fenteany, G. and M. Glogauer, Cytoskeletal remodeling in leukocyte function. Curr Opin Hematol, 2004. 11(1): p. 15-24.
|