|
References 1Shen, M., Schmitt, S., Buac, D. &; Dou, Q. P. Targeting the ubiquitin-proteasome system for cancer therapy. Expert opinion on therapeutic targets 17, 1091-1108 (2013). 2Oddo, S. The ubiquitin-proteasome system in Alzheimer''s disease. Journal of cellular and molecular medicine 12, 363-373 (2008). 3Dennissen, F. J., Kholod, N. &; van Leeuwen, F. W. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Progress in neurobiology 96, 190-207 (2012). 4Huang, Q. &; Figueiredo-Pereira, M. E. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis : an international journal on programmed cell death 15, 1292-1311 (2010). 5Ciechanover, A. &; Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40 (2003). 6Pickart, C. M. &; Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature reviews. Molecular cell biology 5, 177-187 (2004). 7Sauer, R. T. &; Baker, T. A. AAA+ proteases: ATP-fueled machines of protein destruction. Annual review of biochemistry 80, 587-612 (2011). 8Dahlmann, B. et al. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS letters 251, 125-131 (1989). 9Tamura, T. et al. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Current biology : CB 5, 766-774 (1995). 10Knipfer, N. &; Shrader, T. E. Inactivation of the 20S proteasome in Mycobacterium smegmatis. Molecular microbiology 25, 375-383 (1997). 11Nagy, I., Tamura, T., Vanderleyden, J., Baumeister, W. &; De Mot, R. The 20S proteasome of Streptomyces coelicolor. Journal of bacteriology 180, 5448-5453 (1998). 12Brooks, S. A. Functional interactions between mRNA turnover and surveillance and the ubiquitin proteasome system. Wiley interdisciplinary reviews. RNA 1, 240-252 (2010). 13Wenzel, T. &; Baumeister, W. Conformational constraints in protein degradation by the 20S proteasome. Nature structural biology 2, 199-204 (1995). 14Groll, M. et al. A gated channel into the proteasome core particle. Nature structural biology 7, 1062-1067 (2000). 15Yu, Y. et al. Interactions of PAN''s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. The EMBO journal 29, 692-702 (2010). 16Rabl, J. et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Molecular cell 30, 360-368 (2008). 17Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U. &; Wolf, D. H. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. The Journal of biological chemistry 272, 25200-25209 (1997). 18Marques, A. J., Palanimurugan, R., Matias, A. C., Ramos, P. C. &; Dohmen, R. J. Catalytic mechanism and assembly of the proteasome. Chemical reviews 109, 1509-1536 (2009). 19Voges, D., Zwickl, P. &; Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual review of biochemistry 68, 1015-1068 (1999). 20Arendt, C. S. &; Hochstrasser, M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proceedings of the National Academy of Sciences of the United States of America 94, 7156-7161 (1997). 21Kloetzel, P. M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nature immunology 5, 661-669 (2004). 22Murata, S. et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349-1353 (2007). 23Gaczynska, M., Rock, K. L. &; Goldberg, A. L. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264-267 (1993). 24He, J. et al. The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric alpha-helical rings. Structure 20, 513-521 (2012). 25Tomko, R. J., Jr. &; Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annual review of biochemistry 82, 415-445 (2013). 26Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615 (2002). 27Tomko, R. J., Jr., Funakoshi, M., Schneider, K., Wang, J. &; Hochstrasser, M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Molecular cell 38, 393-403 (2010). 28Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191 (2012). 29Matyskiela, M. E., Lander, G. C. &; Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nature structural &; molecular biology 20, 781-788 (2013). 30Tian, G. et al. An asymmetric interface between the regulatory and core particles of the proteasome. Nature structural &; molecular biology 18, 1259-1267 (2011). 31Gillette, T. G., Kumar, B., Thompson, D., Slaughter, C. A. &; DeMartino, G. N. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. The Journal of biological chemistry 283, 31813-31822 (2008). 32Sledz, P. et al. Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proceedings of the National Academy of Sciences of the United States of America 110, 7264-7269 (2013). 33Lee, S. Y., De la Mota-Peynado, A. &; Roelofs, J. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. The Journal of biological chemistry 286, 36641-36651 (2011). 34Pollice, A. et al. TBP-1 protects the human oncosuppressor p14ARF from proteasomal degradation. Oncogene 26, 5154-5162 (2007). 35Lassot, I. et al. The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Molecular cell 25, 369-383 (2007). 36Corn, P. G., McDonald, E. R., 3rd, Herman, J. G. &; El-Deiry, W. S. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nature genetics 35, 229-237 (2003). 37Truax, A. D., Koues, O. I., Mentel, M. K. &; Greer, S. F. The 19S ATPase S6a (S6''/TBP1) regulates the transcription initiation of class II transactivator. Journal of molecular biology 395, 254-269 (2010). 38Satoh, T. et al. Roles of proteasomal 19S regulatory particles in promoter loading of thyroid hormone receptor. Biochemical and biophysical research communications 386, 697-702 (2009). 39Satoh, T. et al. Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2. Endocrinology 150, 3283-3290 (2009). 40Jakobs, A. et al. Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic acids research 35, e109 (2007). 41Freemont, P. S., Hanson, I. M. &; Trowsdale, J. A novel cysteine-rich sequence motif. Cell 64, 483-484 (1991). 42Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-1583 (1989). 43Jin, L., Williamson, A., Banerjee, S., Philipp, I. &; Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653-665 (2008). 44Matsumoto, M. L. et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Molecular cell 39, 477-484 (2010). 45Williamson, A. et al. Identification of a physiological E2 module for the human anaphase-promoting complex. Proceedings of the National Academy of Sciences of the United States of America 106, 18213-18218 (2009). 46Kim, H. T. et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. The Journal of biological chemistry 282, 17375-17386 (2007). 47Mukhopadhyay, D. &; Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205 (2007). 48Terrell, J., Shih, S., Dunn, R. &; Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Molecular cell 1, 193-202 (1998). 49Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. &; Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Molecular cell 21, 737-748 (2006). 50Huang, F., Goh, L. K. &; Sorkin, A. EGF receptor ubiquitination is not necessary for its internalization. Proceedings of the National Academy of Sciences of the United States of America 104, 16904-16909 (2007). 51Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. &; Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 (2002). 52Freudenthal, B. D., Gakhar, L., Ramaswamy, S. &; Washington, M. T. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nature structural &; molecular biology 17, 479-484 (2010). 53Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821-1824 (2005). 54Bienko, M. et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Molecular cell 37, 396-407 (2010). 55Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature cell biology 8, 339-347 (2006). 56Huang, M. &; D''Andrea, A. D. A new nuclease member of the FAN club. Nature structural &; molecular biology 17, 926-928 (2010). 57Joo, W. et al. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333, 312-316 (2011). 58Moldovan, G. L. &; D''Andrea, A. D. How the fanconi anemia pathway guards the genome. Annual review of genetics 43, 223-249 (2009). 59Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Molecular cell 17, 331-339 (2005). 60Dupont, S. et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 136, 123-135 (2009). 61Winston, J. T. et al. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes &; development 13, 270-283 (1999). 62Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Developmental cell 4, 813-826 (2003). 63Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972-1975 (2003). 64Plafker, S. M., Plafker, K. S., Weissman, A. M. &; Macara, I. G. Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import. The Journal of cell biology 167, 649-659 (2004). 65Johnson, E. S. Protein modification by SUMO. Annual review of biochemistry 73, 355-382 (2004). 66Geiss-Friedlander, R. &; Melchior, F. Concepts in sumoylation: a decade on. Nature reviews. Molecular cell biology 8, 947-956 (2007). 67Mahajan, R., Delphin, C., Guan, T., Gerace, L. &; Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107 (1997). 68Saitoh, H. et al. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Current biology : CB 8, 121-124 (1998). 69Hardeland, U., Steinacher, R., Jiricny, J. &; Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. The EMBO journal 21, 1456-1464 (2002). 70Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979-982 (2005). 71Steinacher, R. &; Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Current biology : CB 15, 616-623 (2005). 72Goodson, M. L. et al. Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. The Journal of biological chemistry 276, 18513-18518 (2001) 73David, G., Neptune, M. A. &; DePinho, R. A. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. The Journal of biological chemistry 277, 23658-23663 (2002). 74Ling, Y. et al. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic acids research 32, 598-610 (2004). 75Desterro, J. M., Rodriguez, M. S. &; Hay, R. T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2, 233-239 (1998). 76Wilson, V. G. &; Heaton, P. R. Ubiquitin proteolytic system: focus on SUMO. Expert Rev Proteomics 5, 121-135 (2008). 77Bylebyl, G. R., Belichenko, I. &; Johnson, E. S. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. The Journal of biological chemistry 278, 44113-44120 (2003). 78Kerscher, O., Felberbaum, R. &; Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual review of cell and developmental biology 22, 159-180 (2006). 79Meluh, P. B. &; Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Molecular biology of the cell 6, 793-807 (1995). 80Kurepa, J. et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. The Journal of biological chemistry 278, 6862-6872 (2003). 81Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H. &; Owerbach, D. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. The Journal of biological chemistry 279, 27233-27238 (2004). 82Guo, D. et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature genetics 36, 837-841 (2004). 83Vertegaal, A. C. et al. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Molecular &; cellular proteomics : MCP 5, 2298-2310 (2006). 84Saitoh, H. &; Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. The Journal of biological chemistry 275, 6252-6258 (2000). 85Sternsdorf, T. et al. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Molecular and cellular biology 19, 5170-5178 (1999). 86Kamitani, T., Nguyen, H. P., Kito, K., Fukuda-Kamitani, T. &; Yeh, E. T. Covalent modification of PML by the sentrin family of ubiquitin-like proteins. The Journal of biological chemistry 273, 3117-3120 (1998). 87Ayaydin, F. &; Dasso, M. Distinct in vivo dynamics of vertebrate SUMO paralogues. Molecular biology of the cell 15, 5208-5218 (2004). 88Kretz-Remy, C. &; Tanguay, R. M. SUMO/sentrin: protein modifiers regulating important cellular functions. Biochemistry and cell biology = Biochimie et biologie cellulaire 77, 299-309 (1999). 89Sramko, M., Markus, J., Kabat, J., Wolff, L. &; Bies, J. Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. The Journal of biological chemistry 281, 40065-40075 (2006). 90Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422-429 (2009). 91Mukhopadhyay, D. &; Dasso, M. Modification in reverse: the SUMO proteases. Trends in biochemical sciences 32, 286-295 (2007). 92Desterro, J. M., Thomson, J. &; Hay, R. T. Ubch9 conjugates SUMO but not ubiquitin. FEBS letters 417, 297-300 (1997). 93Johnson, E. S. &; Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. The Journal of biological chemistry 272, 26799-26802 (1997). 94Gareau, J. R. &; Lima, C. D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nature reviews. Molecular cell biology 11, 861-871 (2010). 95Zhu, J. et al. Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. The Journal of biological chemistry 283, 29405-29415 (2008). 96Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H. &; Melchior, F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Molecular cell 30, 610-619 (2008). 97Hochstrasser, M. SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5-8 (2001). 98Pichler, A., Gast, A., Seeler, J. S., Dejean, A. &; Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120 (2002). 99Takahashi, Y., Kahyo, T., Toh, E. A., Yasuda, H. &; Kikuchi, Y. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. The Journal of biological chemistry 276, 48973-48977 (2001). 100Johnson, E. S. &; Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735-744 (2001). 101Cheng, C. H. et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes &; development 20, 2067-2081 (2006). 102Potts, P. R. The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination. DNA repair 8, 499-506 (2009). 103Palvimo, J. J. PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochemical Society transactions 35, 1405-1408 (2007). 104Wang, Y. &; Dasso, M. SUMOylation and deSUMOylation at a glance. Journal of cell science 122, 4249-4252 (2009). 105Rodriguez, M. S., Dargemont, C. &; Hay, R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. The Journal of biological chemistry 276, 12654-12659 (2001). 106Hay, R. T. SUMO: a history of modification. Molecular cell 18, 1-12 (2005). 107Yang, X. J. &; Gregoire, S. A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Molecular cell 23, 779-786 (2006). 108Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Molecular and cellular biology 23, 2953-2968 (2003). 109Yamashita, D. et al. The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes to cells : devoted to molecular &; cellular mechanisms 9, 1017-1029 (2004). 110Shalizi, A. et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012-1017 (2006). 111Mohideen, F. et al. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nature structural &; molecular biology 16, 945-952 (2009). 112Yang, S. H., Galanis, A., Witty, J. &; Sharrocks, A. D. An extended consensus motif enhances the specificity of substrate modification by SUMO. The EMBO journal 25, 5083-5093 (2006). 113Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nature structural &; molecular biology 12, 264-269 (2005). 114Knipscheer, P. et al. Ubc9 sumoylation regulates SUMO target discrimination. Molecular cell 31, 371-382 (2008). 115Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K. &; Chen, D. J. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 37, 183-186 (1996). 116Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K. &; Chen, D. J. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271-279 (1996). 117Li, W. et al. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic acids research 28, 1145-1153 (2000). 118Hannich, J. T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. The Journal of biological chemistry 280, 4102-4110 (2005). 119Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. &; Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. The Journal of biological chemistry 281, 16117-16127 (2006). 120Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. &; Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America 101, 14373-14378 (2004). 121Lin, D. Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular cell 24, 341-354 (2006). 122Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M. &; Pandolfi, P. P. The mechanisms of PML-nuclear body formation. Molecular cell 24, 331-339 (2006). 123Ouyang, J., Shi, Y., Valin, A., Xuan, Y. &; Gill, G. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Molecular cell 34, 145-154 (2009). 124Song, J., Zhang, Z., Hu, W. &; Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. The Journal of biological chemistry 280, 40122-40129 (2005). 125Baba, D. et al. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. Journal of molecular biology 359, 137-147 (2006). 126Reverter, D. &; Lima, C. D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687-692 (2005). 127Kerscher, O. SUMO junction-what''s your function? New insights through SUMO-interacting motifs. EMBO reports 8, 550-555 (2007). 128Minty, A., Dumont, X., Kaghad, M. &; Caput, D. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. The Journal of biological chemistry 275, 36316-36323 (2000). 129Takahashi, H., Hatakeyama, S., Saitoh, H. &; Nakayama, K. I. Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. The Journal of biological chemistry 280, 5611-5621 (2005). 130Boddy, M. N. et al. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Molecular and cellular biology 23, 5939-5946 (2003). 131Raffa, G. D., Wohlschlegel, J., Yates, J. R., 3rd &; Boddy, M. N. SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. The Journal of biological chemistry 281, 27973-27981 (2006). 132Heideker, J., Perry, J. J. &; Boddy, M. N. Genome stability roles of SUMO-targeted ubiquitin ligases. DNA repair 8, 517-524 (2009). 133Prudden, J. et al. SUMO-targeted ubiquitin ligases in genome stability. The EMBO journal 26, 4089-4101 (2007). 134Denuc, A., Bosch-Comas, A., Gonzalez-Duarte, R. &; Marfany, G. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PloS one 4, e5571 (2009). 135劉邦宇 (2009) SUMO結合受質之蛋白質體學研究,碩士論文,國立台灣大學生命科學院生化科技學系 136劉昀瑄 (2011) 蛋白&;#37238;體19S Rpt5 ATPase 受 SUMO 化修飾之研究,碩士論文,國立台灣大學生命科學院生化科技學系 137Jakobs, A. et al. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nature methods 4, 245-250 (2007). 138Rizos, H., Woodruff, S. &; Kefford, R. F. p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell cycle 4, 597-603 (2005). 139高翊軒 (2012) 蛋白&;#37238;體19S Rpt5 ATPase 之 SUMO 交互作用模組功能研究,碩士論文,國立台灣大學生命科學院生化科技學系 140魏 綺 (2013) 蛋白&;#37238;體 19S Rpt5 ATPase 受 SUMO化修飾之調控機制研究,碩士論文,國立台灣大學生命科學院生化科技學系 141Stewart, S. A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. Rna 9, 493-501 (2003). 142Moore, C. B., Guthrie, E. H., Huang, M. T. &; Taxman, D. J. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods in molecular biology 629, 141-158 (2010). 143Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615-623 (1998). 144Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248-254 (1976). 145Schagger, H., Cramer, W. A. &; von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Analytical biochemistry 217, 220-230 (1994). 146Birnboim, H. C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods in enzymology 100, 243-255 (1983). 147Ghosh, S. et al. Method for enhancing solubility of the expressed recombinant proteins in Escherichia coli. BioTechniques 37, 418, 420, 422-413 (2004). 148Stadtmueller, B. M. et al. Structural models for interactions between the 20S proteasome and its PAN/19S activators. The Journal of biological chemistry 285, 13-17 (2010). 149Besche, H. C., Peth, A. &; Goldberg, A. L. Getting to first base in proteasome assembly. Cell 138, 25-28 (2009). 150Schimmel, J. et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Molecular &; cellular proteomics : MCP 7, 2107-2122 (2008).
|