跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明宏
研究生(外文):Ming-Hong Lin
論文名稱:非計量式組成鈦酸鋇陶瓷之無壓力燒結暨其微結構發展
論文名稱(外文):Pressureless-sintering and microstructure development of non-stoichiometric barium titanate compositions
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-Yang Lu
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:87
語文別:英文
論文頁數:635
中文關鍵詞:鈦酸鋇燒結電荷補償施體受體
外文關鍵詞:Barium titanatesinteringCharge compensationDonorAcceptor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以傳統燒結爐和二氧化碳雷射之無壓力燒結技術,研究非計量式組成(TiO2過賸與BaO過賸)之陶瓷與添加A-位置和B-位置施體(donor)或受體(acceptor)之微結構發展與燒結體之導電度。結晶
相分析使用X-ray繞射(XRD)。光學顯微鏡(OM),掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)則用於微結構之分析。
研究結果發現非計量式組成鈦酸鋇利用等加熱速率(constant-heatingrate)之燒結法並不適用於決定燒結機制之活化能,而以等溫無壓力(isothermal-pressureless)燒結法求TiO2過賸組成鈦酸鋇所得之活化能值也在302至522kJ/mol之間,由高解析度穿透式電子顯微鏡之晶格影像分析發現雖然燒結溫度在BaTiO3-Ba6TiO40之共晶溫度(1332oC)以下,仍可見有玻璃相存在於晶界之間,因此燒結之緻密化機制會隨燒結溫度之升高而由固相燒結逐漸改變成液相燒結,使活化能值隨之改變。微結構分析顯示在TiO2過賸組成鈦酸鋇燒結體中均可發現BaO-TiO2系中之第二相Ba6Ti17O40,此相由微結構之特徵發現當燒結溫度低於共晶溫度時,即由粉體中之過賸TiO2 與BaTiO3經由固態反應生成共晶液相,此共晶液相在冷卻過程中凝固時,Ba6Ti17O40成核於BaTiO3晶粒表面上並有明顯之晶向關係,同時與其他TiO2過賸相長成層狀結構。若經長時間退火(annealing),則層狀特徵消失,其它TiO2過賸相則再反應而生成Ba6Ti17O40相,實驗結果並顯示Ba6Ti17O40為1100oC以下最穩定之第二相。
施體添加於鈦酸鋇陶瓷之微結構觀察顯現,在添加施體La2O3與Y2O3之鈦酸鋇陶瓷燒結體中,分別發現第二相La2Ti2O7 和-Y2Ti2O7,因此當施體添加量高於GGIT(grain growth inhibition threshold) 值抑制晶粒成長之主要機制除因生成陽離子空缺而提高(緻密化/晶粒粗化)之比值外,也由於第二相之pinning作用。同時這些抑制晶粒成長機制在共晶液相出現後即失去其作用。由晶格常數、導電度與晶粒大小發現Y2O3添加於 TiO2過賸組成時,Y3+取代Ba2+位置而為施體之角色,但當添加於BaO過賸組成時, 則Y3+會自取代Ba2+位置逐漸轉換為取代Ti4+位置,當添加量達到0.65mol%時便完全轉換成受體之作用。二氧化碳雷射之鈦酸鋇陶瓷燒結體之導電度結果顯示添加施體之電荷補償機制與溫度有關,並可分成空缺補償混合補償與電子補償三個區域。
受體添加於鈦酸鋇陶瓷之微結構分析發現,MgTiO3在於添加MgO之鈦酸鋇陶瓷體之晶界上,而添加Na2O時,則出現Na2TiO4與Na2Ti2O9相。在BaTiO3晶粒中之Na2TiO4相由其SADP得到其晶向關係為[110]BT//[100]N4T,(111)BT//(010)N4T,(112)BT//(001)N4T。因為氧空缺的形成,受體添加於鈦酸鋇粉體中使高溫相h-BaTiO3以介穩態而保留至室溫。
Pressureless-sintering of non-stoichiometric barium titanate (BaTiO3) powder of TiO2- and BaO-excess compositions has been investigated using both conventional furnace and C02-laser. Both donor- and acceptor-doping are studied for their effect on sintering kinetics, microstructure and the resultant semiconductivity of the sintered ceramic. Crystalline phases are analysed by X-ray diffractometry (XRD). Attention has been paid to the analysis of the corresponding sintered microstructure by adopting optical microscopy (OM), scanning, and transmission electron microscopy (SEM and TEM).
Constant-heating rate (CHR) sintering technique appears unsuitable for determining the activation enthalpy (AH) of densification in BaTiO3. A considerable span of DH = 392 - 522 kJ-mol-1 is also found from isothermal pressureless-sintering of TiO2-excess compositions. High-resolution TEM reveals that SiO2-containing glass formed due to the trace impurities associated with the initial powders at T <1332oC (lowest eutectic temperature of BaTiO3-Ba6Til7O40) is responsible for the scattering of AH values. Its formation has changed the sintering mechanism from solid-state to liquid phase.
Second-phase of Ba6Til7O40 has been identified ambiguously in sintered TiO2-excess compositions. It is formed at low temperatures (of <1332oC) by reacting the excessive TiO2 or exsolved TiO2 with BaTiO3 in the solid-state upon heating. Characteristic microstructural feature of the solid state-reacted Ba6Til7O40 has been identified. Eutectic liquid is subsequently generated at T>1332oC from BaTiO3-Ba6Til7O40- Upon cooling, the eutectic liquid solidifies again to Ba6Til7O40 which nucleating on BaTiO3 grain surface to develop characteristic lamellar structure and crystallographic orientation relationships. The lamellar microstructural characteristic disappears upon long-term annealing of laser-sintered discs when polytitanates have also homogenized to become Ba6Til7O40. It is evdient that Ba6Til7O40 is the most stable polytitanate phase at room temperature.
"Third-phases" of La2Ti2O7 and Y2Ti2O7 have also been identified by selected-area diffraction patterns (SADP) in La2O3- and Y203-doped compositions, respectively. It is indicative that for donor-concentration exceeding the grain-growth inhibition threshold (GGIT), apart from the increased densification/coarsening (dr/dG) ratio, grain growth is also hindered by a second-phase pinning mechanism. The effect of these inhibition mechanisms is largely diminished once when eutectic liquid of BaTiO3-Ba6Til7O40 is formed. De-sintering associated with eutectic liquid formation is deferred to higher temperatures of T >13320C since the eutectic compositions have been altered to BaTiO3-Ba6Til7O40-(third-phase). Electrical conductivity measurement also suggests that the substitution of A- site byy3+-cation occurs at low Y203-doping levels, but progressively changes to B-site at doping levels exceeding 0.65mol%. Charge compensation mechanism depending upon doping level and temperature can be divided into three schemes of, (1) vacancy, (2) mixed, and (3) electron regime as suggested by semiconductivity of quenched samples from laser-sintering.
Third-phases of MgTiO3, and Na2TiO4 and Na2Ti2O9 have also been identified in MgO- and Na2O-acceptor-doped compositions, respectively. Crystallographic orientation relationships Of [110]BT//[100]N4T, (11l)BT/ / (010)N4T, (112)BT/ / (001)N4T are also determined for Na2TiO4 located intragranularly in BaTiO3 grains. It is also indicative that oxygen vacancies generated by acceptor-doping has resulted to the metastable retention of high temperature hexagonal-BaTiO3 to room temperature.
Page
Abstract 1
Contents v
List of Tables xiv
List of Figures xvi
Chapter 1 Introduction 1
1.1 obective Of research 5
Chapter 2 Review of relevant literature 9
2.1 Crystal structure of BaTiO3 9
2.2 Polymorphic phase transformations in BaTiO3 16
2.2.1 Lattice dynamic of theory - the soft modes 16
2.2.2 Phenomenological observations 20
2.2.3 Origin of ferroelectiicity 24
2.2.4 order of phase transformation 29
2.3 Equilibrium phase diagram of the BaO-TiO2 system 35
2.3.1 Polytitanate phases 37
2.4 Defect chemistry of BaTiO3 46
2.4.1 Intrinsic defects 46
2.4.2 Extrinsic defects 48
2.4.2.1 Donor-doped compositions 49
2.4.2.2 Recent modifications 68
2.4.3 Defect reactions for donor-doping 72
2.4.4 Defect reactions for acceptor-doping 76
2.4.5 Principal charge compensating mechanism upon
donor-doping and the rate-determining species of sintering 78
2.4.6 Defect equilibrium diagram - the Brouwer diagram 81
2.5 Sintering of BaTiO3 ceramics 86
2.5.1 Fundamentals of sintering 86
2.5.1.1 Thermodynamic driving force for sintering 87
2.5.1.2 Sintering kinetic equations 89
2.5.2 Fast-firing technique 92
2.5.2.1 Fast-firing of BaTiO3 96
2.6 Activation enthalpy 96
2.6.1 Derivation of DH from Arrhenius plot 97
2.6.2 Sintering kinetics of BaTiO3 99
2.6.3 Grain growth -coarsening 101
2.6.3.1 Pore-boundary interaction 106
2.6.3.2 Controlled grain growth 110
2.6.4 Grain-growth inhibition threshold (GGlT) 113
2.7 The (111) twins and faceted planes 116
2.7.1 Wuff theorem and the g-plot 119
2.8 Ferroelectiic domains and twinning 131
2.8.1 Types of ferroelectric domains 132
2.8.2 Domain boundary fringes 133
2.8.2.1 a-boundaries 138
2.8.2.2 Freidel''s law 144
2.8.2.3 a-boundaries 145
2.8.3 Observations of domains and domain boundaries 147
2.8.3.1 Domains and boundaries of the 90o-type 149
2.8.3.2 Domains and boundaries of the 180o-type 153
2.8.4 Thermodynamics 155
2.8.5 Experimental observations of domain size 156
Chapter 3 Experimental procedures 157
3.1 Starting powders 157
3.2 Sample preparation 159
3.2.1 Pressureless sintering 163
3.2.2 Fast firing by using CO2 laser 164
3.3 Sintering kinetics 166
3.3.1 Density measurement 166
3.3.2 Sintering kinetic curves 167
3.4 X-ray diffractometry 167
3.5 Semiconductivity measurement 167
3.6 Microstructure observations 167
3.6.1 Scanning electron microscopy 168
3.6.2 Grain size determination 168
3.63 Transmission electron microscopy 169
Chapter 4 Experimental results (I) - Undoped compositions 171
4.1 Pressureless-sintering in convention at furnace 171
4.1.1 Sintering kinetics for undoped TiO2-excess 0.997 powders 171
4.1.1.1 Isothermal sintering 171
4.1.1.2 Constant heating-rate sintering 175
4.1.2 Microstructural development of sintered TiO2-excess composition 178
4.1.2.1 Nucleation density of the plate-like grains 186
4.1.2.2 Liquid-phase- sintering microstructure 189
4.1.23 Lattice-fringe imaging of the BaTiO3- Ba6Ti17O40 grain-boundary 199
4.1.3 Faceting in sintered TiO2-excess composition and the g-plot 214
4.1.4 Grain-boundary phases 219
4.1.4.1 Coherent grain-boundary 230
4.1.4.2 Orientation relationships between BaTiO3 and Ba6Til7O40 236
4.1.43 Planar defects in triple-grain junctions 242
4.1.5 Sintering kinetics for undoped BaO-excess 1.013 powders 253
4.1.6 Microstructuraf development of sintered BaO-exces composition 253
4.1.6.1 Second-phases 259
4.2 Activation enthalpy 273
4.2.1Activation enthalpy for conventional pressureless-sintering 273
4.3 Fast firing using CO2 laser 276
4.3.1 Sintering behaviour 276
4.3.2 Sintered density reduction 276
4.3.3 Microstructural analysis of laser-sintered BaTiO3 284
4.3.3.1 TiO2-excess composition 284
4.3.3.2 BaO-excess composition 289
4.4 Microstructural development and heating-rate fo TiO2-excess composition 291
4.5 Ferroelectric domains 300
4.5.1 Observations with optical and scanning electron microscopy 300
4.5.2 Observations with transmission electron microscopy 300
4.5.2.1 Unconventional domain boundaries 303
4.5.3 Determination of displacement vectors 314
Chapter 5 Experimental results (II) - Donor-doped compositions 319
5.1 TiO2-excess 0.997 BaTiO3 composition 319
5.1.1 Sintering behaviour of doped compositions for A-site donor-oxides 319
5.1.2 Sintered microstructures 326
5.1.2.1 La2O3-doped samples 326
5.1.2.2 Y2O3-dopedsampla 341
5.1.23 Grain growth inhibition threshold 357
5.1.2.4 Microstructure at de-sintering temperature 358
5.2 B-site donor-oxides 358
5.3 Determination of lattice constants 372
5.3.1 La2O3-doping 372
53.2 Y2O3-doping 377
5.4 Semiconductivity 377
5.5 BaO-excess 1.013 BaTiO3 composition 394
5.5.1Sintering behaviour and microstructure of theA-site-donor-doped
compositions 394
5.5.1.1Grain growth inhibition and the conductivity
of Y2O3-doped compositions 410
5.5.1.2 Lattice constants of Y2O3-doped compositions 416
5.5.2 Sintering behaviour and microstructure of the
B-site-donor-doped compositions 416
5.5.2-1 Grain growth inhibition by B-site donor-oxides 425
5.6 Estimation of activation enthalpy 432
Chapter 6 Expetimental results (III) - Acceptor-doped compositions 441
6.1 TiO2-excess 0.997 BaTtO3 compositions 441
6.1.1 Microstructure observations of MgO-doped TiO2-excess samples 448
6.1.2 Microstructural observations of Na2O-doped TiO2-excess samples 475
6.2 BaO-excess 1.013 BaTiO3 compositions 487
6.2.1 Microstructure observations of MgO-doped BaO-excess compositions 492
Chapter 7 Discussion Of result 502
7.1 Density reduction - de-sintering 502
7.1.1 Origin of CO2 gas 503
7.1.2 Entrapped of CO2gas in liquid phase 504
7.13 Doped TiO2-excess compositions 508
7.1.4 Summary 511
7.2 Polytitanates in sintered BaTiO3 ceramics 511
7.2.1 Polytitanates and their formation by solid-state reaction 512
7.2.2 Polytitanates and eutectic solidification 518
7.2-3 Change of the lowest eutectic temperature in BaO-TiO2 system 532
7.2.4 Retention of hexagonaf-BaTiO3 and polytitanate second-phases from
eutectic solidification 533
7.2.5 Crystallographic orientation relationships of h- and c-BaTiO3 540
7.2.6 Summary of microstructure development in triple-grain junctions 540
7.2.7 Diffraction patterns of second-phase Ba6Ti17O40 and other polytitanates 543
7.2.8 Summary 545
7.3 Second-phases in sintered BaO-excess compositions 546
7.4 Liquid-phase-sintering in TiO2-excess compositions 547
7.5 Plate-like (111) twin grains in TiO2-excess compositions 551
7.5.1 Growth of the (111) twin grains 553
7.5.2 Evaporation-condensation mechanism 557
7.5.3 Summary 558
7.6 Rate-determining mechanism for the sintering of BaTiO3 compositions 559
7.6.1 Undoped compositions 559
7.6.2 Doped compositions 562
7.6.3 Principal charge compensation mechanism and room-temperature
conductivity 563
7.6.3.1 Donor-oxide La2O3 in TiO2-excess compositions 563
7.6.3.2 Free energy diagram for charge compensation defects 575
7.6.3.3 Donor-oxidde Y2O3 in TiO2-excess compositions 578
7.6.4 Addition with Y2O3-donor oxide in BaO-excess 1.013 compositions 581
7.6.5 Brouwer defect equilibrium diagram - interpretationOf conductivity and
grain-growth inhibition 587
7.7 Rate-determining mechanism for densification:species and step 593
7.8 Acceptor-doping and the retention of high-temperature polymorphs 596
7.8.1 Grain growth inhibition in acceptor-doped compositions 599
Chapter 8 Conclusions 601
Chapter 9 Suggestions to future work 604
Appendices 607
Appendix A-1 607
Appendix A-2 612
Appendix A-3 613
References
614
Biographical Sketch 635
References
Anderson H.U. (1965), "Initial sintering of BaTiO3 compacts," J. Am. Ceram. Soc., 48[3] 118-21.
Anderson H. U. (1973), "Influence of Ba/Ti ratio on initial sintering kinetics of BaTiO3," J. Am. Ceram. Soc., 56[11] 605-06.
Akbas M.A. and Lee W.E. (1996), "Relaxor-ferroelectric transition in rhombohedral PLZT," J. Am. Ceram. Soc., 79[4] backcover.
Amelinkcx S. and Landuyt J. van, (1979), pp. 107-51 in Diffraction and imaging techniques in materials science, vol. I: electron microscopy Edited by S. Amelinkcx and J. v. Landuyt, North-Holland, Amsterdam.
Arima M., Kakihana M., Nakamura Y., Yashima M. and Yoshimura M. (1996), "Polymerized complex route to BaTiO3 powders using barium-titanium mixedmetal citric acid complex," J. Am. Ceram. Soc., 79[11] 2847-56.
Arlt G. and Saako P. (1980), "Domaim configuration and equilibrium size of domains in BaTiO3 ceramics," J. Appl. Phys., 51[9] 4956-60.
Arlt G., Hennings D. and With G. de (1985), "Dielectric properties of finegrained barium titanate ceramics," J. Appl. Phys., 58[4] 1619-25.
Arlt G. (1990), "Review: Twinning in ferrolectric and ferroelastic ceramics: Stress relief," J. Mater. Sci., 25[6] 2655-66.
Armstrong T. R., Morgens L. E., Maurice A. K. and Buchanan R. C. (1989),
"Effects of ZrO2 on microstructure and dielectric properties of BaTiO3 ceramics,"
J. Am. Ceram. Soc., 72[4] 605-11.
Ashby M.F. (1974), "A first report on sintering diagrams," Acta metall., 22[31 275-89.
Baiatu T., Waser R. and Hardtl K.H. (1990), "de Electrical degradation of perovskite-type titanates," J. Am. Ceram. Soc., 73[6] 1663-72.
Baik S. (1986), "Segregation of Mg to the (0001) surface of single-crystal A1203: Quantification of AES results," J. Am. Ceram. Soc., 69[5] C-101-3.
Balachandran U. and Eror N.G. (1982), "Electrical conductivity in lanthanumdoped strontium titanate," J. Electrochem. Soc.: Solid Stat.Sci. Techn., 129[5] 1021-1026.
Barker A.S., (1967), in Ferroelectricity Edited by E. F. Weller, Elsivier, Amsterdam.
Anderson H.U. (1965), "Initial sintering of BaTiO3 compacts," J. Am. Ceram. Soc., 48[3] 118-21.
Anderson H. U. (1973), "Influence of Ba/Ti ratio on initial sintering kinetics of BaTiO3," J. Am. Ceram. Soc., 56[11] 605-06.
Akbas M.A. and Lee W.E. (1996), "Relaxor-ferroelectric transition in rhombohedral PLZT," J. Am. Ceram. Soc., 79[4] backcover.
Amelinkcx S. and Landuyt J. van, (1979), pp. 107-51 in Diffraction and imaging techniques in materials science, vol. I: electron microscopy Edited by S. Amelinkcx and J. v. Landuyt, North-Holland, Amsterdam.
Arima M., Kakihana M., Nakamura Y., Yashima M. and Yoshimura M. (1996), "Polymerized complex route to BaTiO3 powders using barium-titanium mixedmetal citric acid complex," J. Am. Ceram. Soc., 79[11] 2847-56.
Arlt G. and Saako P. (1980), "Domaim configuration and equilibrium size of domains in BaTiO3 ceramics," J. Appl. Phys., 51[9] 4956-60.
Arlt G., Hennings D. and With G. de (1985), "Dielectric properties of fine grained barium titanate ceramics," J. Appl. Phys., 58[4] 1619-25.
Arlt G. (1990), "Review: Twinning in ferrolectric and ferrolastic ceramics: Stress relief," J. Mater. Sci., 25[6] 2655-66.
Armstrong T. R., Morgens L. E., Maurice A. K. and Buchanan R. C. (1989),
"Effects of ZrO2 on microstructure and dielectric properties of BaTiO3 ceramics,"
J. Am. Ceram. Soc., 72[4] 605-11.
Ashby M.F. (1974), "A first report on sintering diagrams," Acta metall., 22[3] 275-89.
Baiatu T., Waser R. and Hardtl K.H. (1990), "de Electrical degradation of perovskite-type titanates," J. Am. Ceram. Soc., 73[6] 1663-72.
Baik S. (1986), "Segregation of Mg to the (0001) surface of single-crystal A1203: Quantification of AES results," J. Am. Ceram. Soc., 69[51 C-101-3.
Balachandran U. and Eror N.G. (1982), "Electrical conductivity in lanthanum doped strontium titanate," J. Electrochem. Soc.: Solid Stat.Sci. Techn., 129[51 1021-1026.
Barker A.S., (1967), in Ferroelectricity Edited by E. F. Weller, Elsivier, Amsterdam.
Bennison S.J. and Harmer M.P. (1985), "Grain growth kinetics for alumina in the absence of a liquid phase," J. Am. Ceram. Soc., 68[l] C-22-24.
Bennison S.J. and Harmer M.P. (1990), "Effect of magnesia solute on surface diffusion in sapphire and the role of magnesia in the sintering of alumina," J. Am. Ceram. Soc., 73[4] 833-37.
Bennison S. and Harmer M.P., (1990a),"A history of the role of MgO in the sintering of oc-AI203", PP. 13-49 in Sintering of avdanced ceramics Edited by C. A. Handwerker, J. E. Blendell and W. A. Kaysser Am. Ceram. Soc., Westerville, OH.
Biest 0. van der and Thomas G. (1975), "Indentification of enatiomorphism in crystals by electron microscopy," Acta Cryst., A31[l] 70-76.
Blanchart P., Baumard J.F. and Abelard P. (1992), "Effects of yttrium doping on the grain and grain-boundary resistivities of BaTiO3 for positive temperature coefficient thermistors," J. Am. Ceram. Soc., 75[5] 1068-72.
Bordia R.K. and Raj R. (1986), "Sintering of TiO2-AI203 composites: A model experimental investigation," J. Am. Ceram. Soc., 71[4] 302-10.
Bordia R.K. and Raj R. (1986a), "Sintering oif TiO2-AI203 composites: A model experimental investigation," J. Am. Ceram. Soc., 71[4] 302-10.
Bowen L.J., Carruthers T.G. and Brook R.J. (1978), "Hot-pressing Of Si3N4 with Y203 and Li2O additives," J. Am. Ceram. Soc., 61[7-8] 335-39.
Brook R.J. (1969), "Pore-grain boundary interactions and grain growth," J. Am. Ceram. Soc., 52[l] 56-57.
Brook R.J., (1976),"Controlled grain growth", in Ceramic Fabrication Processes vol. 9, Edited by F. F. Y. Wang, Academic Press, N.Y.
Brook R.J., (1976a),"Defect structure of ceramic materials", pp. 179-167 in
Electrical conductivity in ceramics and glass, part A Edited by N. M. Tallan,
Marcel Dekker, N.Y.
Brook R.J. (1982), "Fabrication principle for the production of ceramics with superior mechanical properties," Proc. Birt. Ceram. Soc., 32[3] 7-24.
Brook R.J. (1982a), "Sintering of ceramics," Lecture Notes , University of Leeds.
Brook R.J., Gilbart E., Hind D. and Vieira J.M., (1982b),"Hot Pressing dilatometer in the study of sintering mechanisms," in Sintering - theory and practice Edited by S. Pejovniv and M. M. Ristic, Elsevier, Amsterdam.
Buessem W.R., Cross L.E. and Goswami A.K. (1966), "Phenomenological theory of high permittivity in fine-grained BaTiO3," J. Am. Ceram. Soc., 49[l] 33-36.
Buessem W.R. and Kahn M. (1971), "Effects of grain growth on the distribution of Nb in BaTiO3 ceramics," J. Am. Ceram. Soc., 54[9] 458-61.
Buseck(Ed) P.R., (1992),"Polytypism and stacking disorder", pp. 231-88 in Minerals and deactions at the atomic scale: Trasmission electron microscopy vol.27, Mineralogy Society of America, Washington, D. C.
Bussem R.C., (1986), in Ceramic materials for electronics Edited by R. C. Buchanan, Marcel Dekker, N.Y.
Cahn J.W. (1962), Acta metall., 10[9] 789-98.
Carpay F.M.A. and Stuijts A.L. (1975), "Characterization of grain growth phenomena during sintering of single-phase ceramics," Sci. Ceram., 823-38.
Catlow C.R.A., (1981),"Defect clustering in non-stoichiometric oxides", pp. 61-98 innonstoichiomctric oxides Edited by 0. T. Sorensen, Academic Press, N.Y.
Chan N.H. and Symth D.M. (1976), "Defect chemistry of BaTiO3," J. Electrochem. Soc., 123[10] 1584-85.
Chan N.H., Sharma R.K. and Smyth D.M. (1981), "Nonstoichiometry in undoped BaTiO3," J. Am. Ceram. Soc., 64[9] 556-62.
Chan N.H., Sharma R K. and Symth D.M. (1982), "Nonstoichiometry in acceptor-doped BaTiO3," J. Am. Ceram. Soc., 65[3] 167-70.
Chan N.H. and Smyth D.M. (1984), "Defect chemistry of donor-doped BaTiO3," J. Am. Ceram. Soc., 67[4] 285-88.
Chan N.H., Harmer M.P. and Smyth D.M. (1986), "Compensating defects in highly donor-doped BaTiO3," J. Am. Ceram. Soc., 69[61 507-10.
Chan H. M., Horvath S. F. and Harmer M. P.''(1986a), "HRTEM of ferroelectric domains in Nd-doped BaTiO3," Am. Ceram. Soc. Bull., 65[8] 1134.
Chao C.H. (1998), "Processing parameters in the making of silica-based ceramic cores and phase transformations in sintered colloidal silica," PhD thesis, National Sun Yat-Sen University, Taiwan.
Chen J. and Harmer M.P. (1990), "Surface anisotropy of pyrochlore," J. Am. Ceram. Soc., 73[4] backcover.
Chen S.Y. (1994), "Cracking, texture evolution and electrical properties of ferroelectric thin films," PhD thesis, University of Michigan, Ann Arbor.
Chen J. and Shen P. (1997), "On the rotation of non-epitaxy Nil-xO particles within zirconia grain," Scripta mater., 37 1287-94.
Chen Chien-How (1998), "Phase transition in undoped BaTiO3," MSc thesis, National Sun Yat-Sen University, Taiwan. Chiang Y.M. and Peng C.J., (1987),"Grain-boundary nonstoichiometry in spinels and titanates", pp. 361-77 in Nonsotichiometric compounds vol. 23, Edited by C. R. A. Catlow and W. C. mackrodt, Am. Ceram. Soc., Westerville, OH.
Chiang Y.M. and Takagi T. (1990), "Grain-boundary chemistry of barium titanate and strontium titanate: 1, High temperature equilibrium space charge," J. Am. Ceram. Soc., 73[11] 3278-85.
Chiang Y.M. and Takagi T. (1990a), "Grain-boundary chemistry of barium titanate and strontium titanate: 11, Origin of electrical barrier in PTCR thermistors," J. Am. Ceram. Soc., 73[11] 3286-91.
Chiang Y.M. and Takagi T. (1992), "Comment on "Interfacial segregation in perovskites: I - IV"," J. Am. Ceram. Soc., 75[7] 2017-19.
Choi G.M., Tuller H.L. and Goldschmidt D. (1986), "Electronic-transport behaviour in single-crystallina Bao.03Sro.97TiO3," Phys. Rev., 34B[IO] 6972-79.
Choi G. M. and Tuller H. L. (1988), "Defect Structure and Electrical Properties of Single-Cryatal Bao.03Sro.97TiO3," J. Am. Ceram. Soc., 71[4] 201-205.
Chou C.C. and C M Wayman (1997), "Determination of displacement vector on 1800 domain boundary and polarization arrangements in lead titanate crystals," J. Mater. Res., 12[2] 457-66.
Chu M.Y., Dejonghe L.C., Lin M.K.F. and Lin F.C.T. (1991), "Precoarsening to improve microstructure and sintering of powder compacts," J. Am. Ceram. Soc., 74[11] 1902-11.
Clarke D.R. (1979), "High-resolution techniques and application to non-oxide ceramics," J. Am. Ceram. Soc., 62[5-6] 236-46.
Clarke D.R. (1979a), "On the detection of thin intergranular films by electron microscopy," Ultramicorscopy , 4[l] 33-44.
Clarke D.R. (1987), "On the equlibrium thickness of intergranular glass phases in ceramic materials," J. Am. Ceram. Soc., 70[l] 15-22.
Clarke D.R. (1989), "High-temperature microstructure of a hot-pressed silicon nitride," J. Am. Ceram. Soc., 72[9] 1604-09.
Coble R. L. (1961), "Sintering of crystalline solids, 1. Intermediate and final state diffusion models," J. Appl. Phys., 32[51 787-92.
Coble R.L. and Burke J.E. (1963), "Sintering in ceramcs," Prog. Ceram. Sci., 3 197-251.
Cochran W. (1959), "Crystal stability and the theory of ferroelectricity," Phys. Rev. Lett., 3[9] 412-14.
Cochran W. (1960), "Crystal stability and the theory of ferroelectricity," Adv. Phys., 9[10] 387-423.
Cohen M. U. (1935), Rev. Sci. Instr. 668.
Cook W.R. (1956), J. Am. Ceram. Soc., 39[l] 17.
Cowley J.M., (1979),"Retrospective introduction: what are modulated structures?", pp. 1-9 in Modulated structures - 1979 vol. 53, Edited by J. M. Cowley, J. B. Cohen, M. B. Salamon and B. J. Weunch Am. Inst. Phys., N.Y.
Cross L.E. (1987), "Relaxor ferroelectrics," Ferroelectrics , 76 241-67.
Cross L.E. (1994), "Relaxor ferroelectrics: An overview," Ferroelectrics 151 30520.
Daniels J., Hardtl K. H., Hennings D. and Wernicke R. (1976), "Defect Chemistry and Electrical Conductivity of Doped Barium Titanate Ceramics, Part 1. Electrical conductivity at high temperatures of donor-doped barium titante ceramics," Philips Res. Rep., 31[part 1] 487-504.
Daniels J. (1976a), "Defect chemistry and electrical conductivity of doped barium titanate ceramics, Part 11. Defect equilibrium acceptor-doped barium titanate," Philips Res. Repts , 31[part 2] 505-515.
Daniels J. and Wernicke R. (1976b), "Defect chemistry and electrical conductivity of doped barium titanate ceramics, Part V. New aspects of an improved PTC model," Philips Res. Repts 31[part 5] 544-559.
Daniels J., Hardtl K.H. and Wernicke R. (1978/79), "The PTC effect of barium titanate," Philips Technical Review , 38[3] 73-82.
Davies P.K. and Roth R.S. (1987), "Defect intergrowths in barium polytitanate,l. Ba2Ti9O2O," J- Solid Stat. Chem., 71 490-502.
Davies P.K. and Roth R.S. (1987a), "Defect intergrowths in barium polytitanate, 2. BaTi5Oll," J. Solid Stat. Chem., 71 503-12.
Deer W.A., Howie R.A. and Zussman J., (1992),"Spinel group", PP. 555-68 in An introduction to the rock-forming minerals Edited by W. A. Deer, R. A. Howie and J. Zussman, Longman, Harlow, Essex.
Demartin M., Herad C., Carry C. and Lemaitre J. (1997), "Dedensification and anomalous grain growth during sintering of undoped barium titanate," J. Am. Ceram. Soc., 80[5] 1079-84.
Demczyk B.G., Raj R.S. and Thomas G. (1990), "Ferroelectric domains structure of lanthanum-modified lead titanate ceramics," J. Am. Ceram. Soc., 73[3] 61520.
Desu S.B. and Payne D.A. (1990), "Interfacial segregation in perovskites: 111, Microstructure and electrical properties," J. Am. Ceram. Soc., 73[l] 3407-15. Desu S.B. and Payne D.A. (1990a), "Interfacial segregation in perovskites: I, Theory," J. Am. Ceram. Soc., 73[11] 3391-97.
Desu S.B. and Payne D.A. (1990b), "Interfacial segregation in perovskites: 11, Experimental evidence," J. Am. Ceram. Soc., 73[11] 3398-406.
Desu S.B. and Payne D.A. (1990c), "Interfacial segregation in perovskites: IV, Internal boundary layer devices," J. Am. Ceram. Soc., 73[11] 3416-21.
Doukhan N. and Doukhan J.C. (1986), "Dislocation in perovskites BaTiO3 and CaTiO3," Phys. Chem. Minerals, 13 403-10.
Drofenik M. (1987), "Oxygen partial pressure and grain growth in donor-doped BaTiO3," J. Am. Ceram. Soc., 70[5] 311-14.
Drofenik M. (1992), "Initial morphology and grain growth in donor-doped barium titanate," J. Am. Ceram. Soc., 75[91 2383-89.
Drofenik M. (1993), "Origin of the grain growth anatomy in donor-doped barium titanate," J. Am. Ceram. Soc., 76[l] 123-38.
Dynna G.M. and Chiang Y.M, (1990),"Mechanism of grain growth enhancement and inhibition in donor doped barium titanate", in Sintering of advanced ceramics vol. 7, Edited by C. A. Handwerker, J. E. Blendell and W. A. Kaysser, Am. Ceram. Soc, Westerville, OH.
Edington J. W., (1974),"Part 3. Intrepretation of transmission electron micrographs", pp. 1-96 in Practial Electron Microscopy in Materials Science: Edited by N. V. Philip''s Gloeilampenfabrieken, Eindhoven, Eindhoven.
Egerton L. and Koonce S.E. (1955), "Effect of firing cycle on structure and some dielectric and piezoelectric properties of barium titanate ceramics," J. Am. Ceram. Soc., 38[11] 412-18.
Eibl O., Pongratz P., Skalicky P. and Schmelz H. (1987), "Formation of (111) twins in BaTiO3 ceramics," J. Am. Ceram. Soc., 70[8] C195-97.
Eibl O., Pongeratz P. and Skalicky P. (1988), "Crystallography of (111) twins in BaTiO3," Philos. Mag., B57[4] 521-34.
Eibl O., Pongratz P. and Skalacky P. (1989), "Extended defects in hexagonal BaTiO3," Philos. Mag., A60[5] 601-12.
Enomoto Y. and Yamaji A. (1981), "Preparation of uniformly small-grained BaTiO3," Am. Ceram. Soc. Bull., 60[5] 566-70.
Eror N.G. and Symth D.M. (1978), "Non-stoichiometric disorder in singlecrystalline BaTiO3 at elevated temperatures," J. Sol. Stat. Chem., 24 235-44.
Eyring L., (1981),"Structure, defects, and nonstoichiometry in oxides", in Nonstoichiometric Oxides Edited by 0. T. S. , Academic Press, N.Y. Frank F.C., (1963),"The geometrical thermodynamics of surfaces", pp. 1-15 in Metal Surfaces , Amercian Society of Metals, Metals Park.
Freer R. (1980), "Bibiography self-diffusion and impurity diffusion in oxides," J. Mater. Sci., 15 803-24.
Ganesh R. and Goo E. (1996), "Microstructure and dielectric characteristics of (PbxBao.5-xSro.5)TiO3 ceramics," J. Am. Ceram. Soc., 79[11] 225-32.
Genuist C. and Haussonne F.J.M. (1988), "Sintering of BaTiO3: Dilatometric analysis of diffusion models and microstructure control," Ceram. Int., 14 16979.
Gerthsen P. and Hoffman B. (1973), "Current-voltage characteristics and capacitance of single grain boundaries in semiconducting BaTiO3 ceramics," Solid State Electron. , 16 617-22.
Gevers R., Delavignette P., Blank H. and Amelinckx S. (1964), "Electron microscope transmission images of coherent domain boundries, 1. Dynamical theory," Phys. stat. sol., 4 383-410.
Gevers R., Delavignette P., Blank H., Landuyt J. van and Amelinckx S. (1964a), "Electron microscope transmission images of coherent domain boundaries, 11. Observations," Phy. stat. sol., 5 595-633.
Givargizov E.I., (1991),"Principal ideas of crystal growth", pp. 1-62 in Oriented crystallisation on amorphous substrates Edited by Plenum Press, N.Y.
Goringe M.J., (1979),"Practical operation of the TEM", pp. 24-47 in Transmission electron microscopy of materials Edited by M. J. Goringe and G. Thomas J. Wiley, N.Y.
Greskovich C. and Rosolowski J.H. (1976), "Sintering of covalent solids," J. Am. Ceram. Soc., 59[7-8] 338-43.
Griffen, (1992),"The silica polymorphs," pp. 3-35 in Silicate chemistry Edited by D.T. Griffen, Oxford University Press, Oxford.
Haanstra H.B. and lhrig H. (1980), "Transmission electron microscopy at grain boundarues of PTC-type BaTiO3 ceramics," J. Am. Ceram. Soc., 63[5-6] 288-91.
Hadni A. and Thomas R. (1972), Ferroelectrics , 4 39.
Hagemann H.J. and Hennings D. (1981), "Reversible weight change of acceptordoped BaTiO3," J. Am. Ceram. Soc., 64[10] 590-94.
Han Y.H., Appleby J.B. and Smyth D.M. (1987), "Calcium as an acceptor impurity in BaTiO3," J. Am. Ceram. Soc., 70[2] 96-100.
Handwerker C.A., Cannon R.M. and Coble R.L., (1990),"Final-stage sintering of MgO", pp. 619-43 in Sintering of advanced ceramics vol. 7, Edited by C. A. Handwerker, J. E. Blendell and W. A. Kaysser, Am. Ceram. Soc., Westerville, OH.
Hannstra H.B. and lhring H. (1980), "Transmission electron microscopy at grain boundaries of PTC-type BaTiO3," J. Am. Ceram. Soc., 63[5-6] 288-91.
Harada J., Axe J.D. and Shriane G. (1971), "Neutron-scattering study of soft modes in cubic BaTiO3," Phys. Rev., 4B[l] 155-62.
Harkulich T.M. (1966), J. Am. Ceram. Soc., 49 195-99.
Harmer M.P., Roberts E.W. and Brook R.J. (1979), "Rapid sintering of pure and doped (x-AI203," Trans. J. Brit. Ceram. Soc., 78[l] 22-25.
Harmer M.P. (1980), "Rapid sintering of (x-alumina," PhD thesis, University fo Leeds.
Harmer M.P. and Brook R.J. (1981), "Fast firing - microstructural benefits," J. Brit. Ceram. Soc., 80[5] 147-58.
Harmer M.P., (1984),"Use of solid-solution sintering additives in ceramic processing", pp. 679-96 in Structure and properties of MgO and A1203 ceramics vol. 10, Edited by W. D. Kingery, Am. Ceram. Soc., Columbus, OH.
Hennings D.F.K., Janssen R. and Reynen P.J.L. (1987), "Control of liquid-phaseenhanced discontinous grain growth in barium titanate," J. Am. Ceram. Soc., 70[l] 23-27.
Herard C., Faivre A. and Lemaitre J. (1995), "Surface decontamination treatments of undoped BaTiO3- Part II: Influence on sintering," 1. Euro. Ceram. Soc., 15[l] 145-153.
Herard C., Faivre A. and Lemaitre J. (1995a), "Surface decontamination treatments of undoped BaTiO3- Part 1: Powder and green body properties," J. Euro. Ceram. Soc., 15[l] 135-143.
Heuer A.H., (1984), inscience and technology of zirconia vol. 4, Edited by A. H. Heuer and L. W. Hobbs Am. Ceram. Soc., Columbus, OH.
Heuer A.H. and Ruehle M., (1984a),"Phase transformation in ZrO2-containing ceramics, 1: The instability of c-ZrO2 and the resulting diffusion-controlled reactions", pp. 1-32 inscience and technology of zirconia (III) vol. 12, Edited by N. Claussen, M. Ruehle and A. H. Heuer, Am. Ceram. Soc., Inc., Columbus, OH.
Heywang W. (1964), "Resistivity Anomaly in Doped Barium Titanate," J. Am. Ceram. Soc., 47[10] 484-490.
Heywang W. (1971), "Semiconducting barium titanate," J. Mater. Sci., 6 1214-26. Hillert M. (1988), "Inhibition of grain growth by second-phase particles," Acta metall., 36[12] 3177-81.
Hirsch P.B., Howie A., Nicholson R.B., Pashley D.W. and Whelan M.J., (1977), pp. 380-84 inelectron microscopy of thin crystals Edited by R.E. Krieger Publishing Co., N.Y.
Hua G.L., Withers T.R. and Thompson J.G. (1988), "An electron diffraction and lattice-dynamical study of the diffuse scattering in b-critobalite," J. Appl. Cryst., 21[5] 458-65.
Hogg C.L., Stringer R.K. and Swain M.V. (1986), "Grain-boundary cavitation and bloating of isostatically hot-pressed magnesia-partially-stabilized zirconina on air annealing," J. Am. Ceram. Soc., 69[3] 248-51.
Hong C.W. (1997), "New concept for simulating particle packing in colloidal forming processes," J. Am. Ceram. Soc., 80[10] 2517-24.
Hooton J.A. and Merz W.J. (1955), "Etch patterns and ferroelectric domains in BaTiO3 single crystals," Phys. Rev., 98 409-13.
Hsiang H.I. and Yen F.S. (1996), "Effect of crystallite size on the ferrolectric domain growth of ultrafine BaTiO3 powders," J. Am. Ceram. Soc., 78[4] 1053-60.
Hsieh Hwui-Lin (1990), "Processing and dielectric properties of high-purity BaTiO3 (in Mandarin)," PhD thesis, National Cheng-Kung University, Taiwan.
Hsieh H.L. and Fang T.T. (1991), " The effect of defect structure on the sintering behavior and microstructural evolution of La3+ doped BaTiO3," J. Mater. Scl. Lettt,, 10[5] 276-78.
Hu Y. H., Harmer M. P. and Smyth D. M. (1985), "Solubility of BaO in BaTiO3,"
J. Am. Ceram. Soc., 68[7] 372-76.
Hu Y.H., Chan H.M., Zhang X.W. and Harmer M.P. (1986), "Scanning electron
microscopy and transmission electron microscopy study of ferrolectric domain in doped BaTiO3," J. Am. Ceram. Soc., 69[8] 594-602.
Hua G.L., Withers T.R. and Thompson J.G. (1988), "An electron diffraction and
lattice-dynamical study of the diffuse scattering in P-critobalite," J. Appl. Cryst., 21[5] 458-65.
Hull D. and bacon D.J., (1984),"Dislocations in other crystal structures", pp. 11240 in Introduction to dislocations , Pergamon Press, Oxford.
Huyberechts B., Ishizaki K. and Takata M. (1992), "Experimental evaluation of the acceptor-states compensation in positive-temperatyre-coefficient-type barium titanate," J. Am. Ceram. Soc., 75[3] 722-24.
Huyberechts B., Ishizaki K. and Takata M. (1995), "Review the positive temperature coefficient of resistivity in barium titanate," J. Mater. Sci., 30[10] 2463-74.
Igarashi K., et al. (1989), "Preparation of semiconducting barium titanate by excimer laser," J. Am. Ceram. Soc., 72[9] 2367-68.
jima S. and Buseck P.R. (1975), "HRTEM of snstatite I: Twinning, polymorphism and polytpism," Am. Mineral., 60 758-70.
Jaffee B., Cook W.R. and Jaffee H., (1971),"Barium titanate", PP. 49-114 inpeizoelectric ceramics Edited by B. Jaffee, W. R. Cook and H. Jaffee Academic Press, N.Y.
javadpour J. and Eror N.G. (1988), "Raman spectroscopy of higher titanate phase in the BaTiO3-TiO2 system," J. Am. Ceram. Soc., 71[4] 206-13.
Johnson D.W., (1982),"Powder preparation - ceramics", pp. 23-37 inadvances in powder technology Edited by G. Y. Chin Am. Soc. Metals, Metals Park, OH.
jonker G.H. and Kwestroo W. (1958), "Ternary systems BaO-TiO2 and BaO-TiO2ZrO2," J. Am. Ceram. Soc., 41[10] 390-94.
jonker G.H. (1964), "Some aspects of semiconducting barium titanate," SolidState Electron., 7 895-903.
Jonker G.H., (1981),"Equilibrium barriers in PTC thermistors", pp. 155-66 in Grain-Boundary Phenomena in Electronic Ceramics vol. 1, Edited by L. M. Levinson, Am. Ceram. Soc., Columbus, OH.
Jonker G.H. and Havinga E.E. (1982), "The Influence of foreign ions on the crystal lattice of barium titanate," Mater. Res. Bull., 17[3] 345-50.
Judgle D.B. (1966), "The control of cubic (111) twins in polycrystalline BaTiO3 and their effect on the electrical properties," PhD thesis, Renselaer Polytechnic Institute, Troy NY.
Kasai T., Ozaki Y., Noda H. and Tanemoto K. (1989), "Laser-sintered barium titanate," J. Am. Ceram.Soc., 72[9] 1716-19.
Kastner G., Hilarium V., Wagner R. and Burger W. (1989), "Configuration of ferroelectric domains in semiconducting BaTiO3 ceramics," J. Mater. Sci. Lett., 8[8] 959-60.
Kastner G., Wagner R. and Hilarius V. (1994), "Nucleation of twin by grain coalescence during the sintering of BaTiO3 ceramics," Philos. Mag., A69[6] 105171.
Kaysser W. A., Sprissler M., Handwerker C. A. and Blendell J. E. (1987), "Effect of a liquid phase on the morphology of grain growth in alumina," J. Am. Ceram. Soc., 70[5] 339-43.
Kibbel B.W. and Heuer A.H. (1986), "Exaggerated grain growth in ZrO2toughened A1203," J. Am. Ceram. Soc., 69[31 231-6.
Kim D.Y., Wiederhorn S.M., Hockey B.J., Handerker C.A. and Blendell J.E.
(1990), "Stability and surface energy of wetted grain boundaries in A1203," J.
Am. Ceram. Soc., 77[2] 444-53.
Kim J. C. and Goo E. (1990a), "Inversion twin boundaries in zinc oxide," J. Am. Ceram. Soc., 73[41 877-84.
Kim I.T., Kim Y.H. and Chung S.J. (1995), "Order-disorder transition and microwave dielectric properties of Ba(Nil/3Nb2/3)03 ceramics," Japan J. Appl. Phys., 34 4096-103.
King G. and Goo E. (1990), "Effect of the c/a ratio on the domain structure in (Pbl-xCax)TiO 31" J. Am. Ceram. Soc., 73[6] 1534-39.
Kingery W.D., Bowen H.K. and Uhlmann D.R., (1976),"Dielectric properties", pp. 913-74 inintroduction to ceramics , J. Wiley, N.Y.
Kirby KW. and Wechsler B.A. (1991), "Phase relations in the barium-titanium oxide system," J. Am. Ceram. Soc., 74[81 841-47.
Kittel C., (1976),"Dielectrica and ferroelectrics", pp. 401-31 inintroduction to solid state physics . J. Wiley, N.Y.
Kliewer K.L. and Kochler J.S. (1963), "Space-charge in ionic crystals: 1, General approach with application to NaCl," Phy. Rev., 140[4A] A1226-40.
Koschek G. and Kubalek E. (1985), "Grain-boundary characteristics and their influence on the electrical resistance of barium titanate ceramics," J. Am. Ceram. Soc., 68[11] 582-86.
Kramer M., Hoffmann M.J. and Petzow G. (1993), "Grain growth studies of Si3N4 dispersed in an oxynitride glass," J. Am. Ceram. Soc., 76[11] 2778-84.
Krasevec V., Drofenik M. and Kolar D. (1987), "Topotaxy between BaTiO3 and Ba6Til7O4O," J. Am. Ceram. Soc., 70[8] C193-95.
Krasevec V., Drfenik M. and Kolar D. (1990), "Genesis of the (111) twin in barium titanate," J. Am. Ceram. Soc., 73[4] 856-60.
Kroger F.A., (1976),"The chemistry of imperfect crystals", pp. 826-93 in
Imperfection chemistry of crystalline solid vol. 2, Edited by F. A. Kroger,
American Elsiever, N.Y.
Kroger F.A., (1984),"Electrical properties of (x-alumina", pp. 1-15 in Structure and properties of MgO and A1203 vol. 10, Edited by W. D. Kingery, Am. Ceram. Soc., Westerville, OH.
Kulwicki B.M., (1981),"PTC materials technology, 1955-1980", pp. 138-54 in
Grain-Boundary Phemonea in Electronic Ceramics vol. 1, Edited by L. M.
Levison, Am. Ceram. Soc., Columbus, OH.
Kurata N. and Kuwabara M. (1993), "Semiconducting-insulating transition for highly donor-doped BaTiO3 Ceramics," J. Am. CEram. Soc., 76[6] 1605-08.
Kwon 0. J. and Yoon D. N., (1980),"The liquid phase sintering of W-Ni", insintering Processes vol. 13, Edited by Material Science Research,
Kwon 0. and Messing G.L. (1990), "Kinetic analysis of solution-precipitation during liquid-phase sintering," J. Am. Ceram. Soc., 73[2] 275-81.
LaCourse B. C. and Amarakoon V. R. W. (1995), "Characterization of the firing schedule for positive temperature coefficient of resistance BaTiO3," J. Am. Ceram. Soc., 78[12] 3352-56.
Lagerlof K.P.D., Heuer A.H., Castaing J., Riviere J.P. and Mitchell T.E. (1994), "Slip and twinning in sapphire," J. Am. Ceram. Soc. 77[2] 385-97.
Lambert M. and Comes R. (1969), "The chain structure and phase transition of BaTiO 3 and KNbO3," Solid Stat. Comm., 7 305-08.
Landin S.M. and Schulze W.A. (1990), "Rapid sintering of stoichiometric zincmodified lead magnesium niobate," J. Am. Ceram. Soc., 73[4] 913-18.
Landin S.M. and Schulze W.A. (1990), "Rapid thermal processing of
Pb(MgO.7Zno.3)1/3Nb2/303 multilayer ceramic capacitors," J. Am. Ceram. Soc., 73[4] 909-12.
Lange F.F. (1987), "Contrained network model for predicting densification behaviour of composite powders," J. Mater. Res., 2[l] 59-65.
Langhammer H.T., Mueller T., Polity A., Felgner K.H. and Abricht H.P. (1996), "On the crystal and defect structure of manganese-doped barium titanate ceramics," Mater. Lett., 26[3] 205-10.
Larsen P.K., Cuppens R. and Spierings G.A. (1992), Ferrolectrics, 128 265-.
Lee W.E. and Heuer A.H. (1987), "On the polymorphism of enstatite," J. Am. Ceram. Soc., 70[5] 349-60.
Lee D., Kang S. and Yoon D.N. (1988), "Mechanism of graingrowth and
transformation during liquid-phase sintering of P''-SiAlON," J. Am. Ceram. Soc., 71[9] 803-6.
Lehovec K. (1953), "Space-charge layer and distribution of lattice defects at the surface of ionic crystals," J. Chem. Phys., 21[7] 1123-28. Lejeune M. and Boilot J.P. (1986), "Optimisation of dielectric properties of lead magnesium niobate pyrochlore diphasic mixtures," Am. Ceram. Soc. Bull., 65[4] 679-82.
Levin E. M., Robbins C.R. and (Eds) H.F. McMurdie, (1964),"Na2O-SiO2 system", Fig. 192 in Phase diagrams for ceramists vol. 1, Edited by E. M. Levin, C. R. Robbins and H. F. McMurdie Am. Ceram. Soc., Columbus, OH.
Levin E.M., Robbins C.R. and McMurdie H.F., (1969),"PbO-Nb2O5 system", Fig. 287 in Phase diagrams for ceram
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊