跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃士軒
研究生(外文):Huang, Shih-Syuan
論文名稱:以噴射式大氣電漿在低溫下開發高品質二氧化矽應用在低電壓操作之有機薄膜電晶體之研究
論文名稱(外文):High-Quality Silicon Dioxide Developed by Atmospheric Pressure Plasma Jet at Low Temperature for Low-Voltage OTFT Application
指導教授:張國明
指導教授(外文):Chang, Kow-Ming
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:82
中文關鍵詞:薄膜電晶體大氣電漿低溫低操作電壓漏電流二氧化矽
外文關鍵詞:Thin Film TransistorAPPJLow TemperatureLow Operation VoltageLeakage currentSilicon Dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
有機薄膜電晶體對許多研究者有很高的吸引力主要來自於它可以應用在可撓式顯示器以及可撓式電子。可撓式顯示器可以用在電子紙,這可以減少樹木的砍伐,而可撓式電子方面可以應用在人工皮膚、軟性感測器、RF-ID,雖然有機薄膜電晶體已經發展很長一段時間,但是在有機薄膜電晶體的發展上仍然存在一些問題,主要包含低的電子遷移率、不穩定性、低溫且低成本的製程、高操作電壓。在本論文中,由於塑膠基板不能承受高溫製程,低溫製程的開發變得越來越重要,就我們所知要得到高品質絕緣層通常需要高溫處理,因此開發低溫高品質的絕緣層將是非常困難的,製作絕緣層方法包含PECVD、PVD和溶液製程,PECVD和PVD雖然廣泛被研究,但是都需要真空設備這將不利於大面積製作以及低成本的應用。溶液製程雖然符合低成本需求,但是容易在薄膜中形成孔洞而且為了去除薄膜裡的溶劑需要長時間的烘烤。
目前大多數的OTFTs都操作在高電壓約 -20 V~-40 V,這將會造成較高的功率損耗且不利於應用在攜帶式電子產品。所以如何降低操作電壓是非常之重要的,目前通常利用高介電係數材料以及較薄的絕緣層來當作閘極介電層,這可以增加單位面積的電容值去減少操作電壓。
剛開始為了開發低溫且低成本製程,我們致力於利用大氣電漿技術去開發高品質二氧化矽薄膜當做有機薄膜電晶體絕緣層。因為大氣電漿可以操作在低溫下且適合大面積低成本製程的應用。在第二章我們分析溫度、流量、噴嘴距離、主要氣體對薄膜品質的影響。如我們期待的,我們利用大氣電漿在基板溫度約為150 OC下成功開發出高品質的二氧化矽薄膜,漏電流密度約為2.53E-8 A/cm2 在0.5 MV/cm,目前大多數研究所發表的絕緣層漏電流密度約為1E-8~5E-6 A/cm2 at 0.5 MV/cm且大多數不符合低溫低成本的製程,在第三章,為了減小操作電壓我們絕緣層厚度控制在約10 nm來增加絕緣層單位面積的電容值,我們成功的將所開發出來的高品質二氧化矽整合到低電壓操作的元件上,有機薄膜電晶體操作電壓小於 -2 V、截止電壓約為 -0.8 V、電子遷移率約為0.66 cm2/V-s、次臨界電壓約為700 mV/decade,大多數研究者所發表出來的操作電壓通常大於 -20 V,我們在絕緣層品與元件特性有顯著的改善。
在我們成功沉積高品質絕緣層後,對二氧化矽做表面處理將有助於改善主動層的分子排列,這有助於電子遷移率的提升,但我們發現在做完表面處理後漏電流卻增加了,而這現象並沒有被討論過,且我們認識為這將會限制未來短通道有機薄膜電晶體的發展,為了瞭解這現象我們利用top-contact結構去討論表面處理對漏電流的影響在第四章。

Organic thin film transistors (OTFTs) have lots of attraction for many researches because of their interesting and innovative applications on flexible display and flexible electronics. Flexible display could be used as an e-book which could reduce the use of woods. On the other hand, flexible electronics would be applied for artificial skin, flexible sensors, and RF-ID. Although OTFTs have been studied for a long time, there are still some issues influencing the development of OTFTs. These issues of OTFTs include low mobility, instability, low cost and temperature processes, and high operation voltage.
In this dissertation, we aim to develop low cost ant temperature processes of gate insulator and low-voltage OTFTs. Because the plastic substrate could not sustain high temperature processes, the development of low-temperature processed OTFTs is more and more important. As we known, to gain good film quality with a low leakage current, a high-temperature insulator activation is required. Therefore, it is very difficult to develop low temperature processes for high-quality gate insulator. Fabricating approaches of gate insulator include PECVD, PVD, and solution processes. PECVD and PVD are widely used to deposit insulator but they need a vacuum system and higher cost which are not suitable for large area application of flexible display. Although solution processes could decrease the cost, this method easily forms the pin-hole and needs a long-time baking for solvent-free.
In most researches, OTFTs operated at high voltage about -20 V ~ -60 V which would lead to high power consumption. Because the high power consumption is not suitable for portable electronics, how to reduce the operation voltage of OTFTs would be urgent for flexible display and flexible electronics. Therefore, many researches utilized high-k material or thin insulator as gate dielectric, increasing capacitance of per unit area dielectric, to reduce the operation voltage.
In the beginning, we aim at the development of low cost and temperature processes. We are devoted to use atmospheric pressure plasma jet (APPJ) for depositing high quality silicon dioxide (SiO2) as the gate insulator of OTFTs. Because APPJ could be operated at low temperature and atmospheric pressure, it is suitable for large area and low cost application. In chapter 2, we analyzed the influence of substrate temperature, flow rate, gap distance, and main gas on the quality of SiO2. As we expected, a low leakage current density of 2.53 E-8 A/cm2 at 0.5 MV /cm for SiO2 deposited by APPJ at low temperature about 150 OC was demonstrated here. The leakage current density of most researches are between 1E-8~5E-6 A/cm2 at 0.5 MV /cm and most of them are not suitable for low cost and temperature processes.
In order to reduce operation voltage of OTFTs, the thickness of SiO2 was controlled about 10 nm to increase the capacitance of per unit area dielectric. Low-voltage OTFTs were successfully integrated with APPJ-SiO2 which was described in chapter 3. These OTFTs showed a lower operation voltage about -2 V, a lower threshold voltage about -0.8 V, a good mobility 0.66 cm2/V-s, and a good subthreshold swing about 700 mV/decade. We got obviously improvement on the performance of gate insulator and OTFTs by using APPJ.
After we successfully deposited high quality silicon oxide, surface treatment on the silicon oxide could be used to improve ordering of active layer which would increase mobility of OTFTs. However, we found that the leakage current would increase with a surface treatment. We consider this phenomenon would limit the development of short channel OTFTs. In order to understand the phenomenon, we utilized top-contact structure to discuss the influence of the surface treatment on leakage current in chapter 4.

Chinese Abstract………………………..…………………………………………………...i
English Abstract………………………………………………………………………..…...iii
Acknowledgment…………………………………………………………………………...vi
Contents…………………………………………………………………………............... vii
Table caption ……………………………………………………………………………….ix
Figure Captions………………………………………………………………………….... .x
Chapter 1 Introduction……………………………………………………………………...1
1.1 History &Application of OTFTs……………………………………………………..1
1.2 Operation theory of OTFTs…………………………………………….....................2
1.3 Major issues for OTFTs development……………………………………………….4
1.4 Overview of Dissertation…………………………………………………………….6
1.5 Reference………………………………………………………………………….…14
Chapter 2 Development of low-temperature and high-quality silicon oxide
processed by Atmospheric pressure plasma jet……………………………………………20
2.1 Effect of growth rate influenced by substrate temperature on different substrate
materials………………………………………………………………….................20
2.1.1 Introduction……………………………………………………………...……..20
2.1.2 Experiment…………………………………………………………………......21
2.1.3 Results and Discussion…………………………………………………….......23
Reference………………………………………..………………………………..…..33
2-2 The effect flow rate on the surface morphology and film quality………................34
Reference………………………………………………………………………………41
2.3 The influence of gap distance for deposition rate and film leakage………………...42
2.4 The effect of main gas on the deposition rate and electrical characteristics………..47
2.4.1 Introduction……………………………………………………………………..…47
2.4.2 Experiment………………………………………………………………….……..47
2.4.3 Results and Discussion………………………………………………………….....48
Reference……………………………………………………………………………..….57
Chapter 3 Characterization and Discussion of Low-Voltage OTFT Devices with a Atmospheric-Deposited SiO2………………………………………………………....58
3.1 Introduction…………………………………………………………………............58
3.2 Experiment…………………………………………………………………………..58
3.3 Results and Discussion………………………………...………………………….…59
Reference………………………………………………………………………………...66
Chapter 4 The investigation of electrical characteristic dependent of surface hydrophobic treatment………………………………………………………………………………..…..67
4.1 Introduction………………………..…………………………….…………………..67
4.2 Experiment…………………………………………………………….……………..68
4.3 Results and Discussion…………………………………………………………..…...69
4.4 Conclusions……………………………………………………………………..……71
References……………………………………………………………………....………..78
Chapter 5 Conclusion and Future Work………………………………………………....…79
5.1 Conclusion………………………………………………………………..……….…79
5.2 Future Work…………………………………………………………………............81
Vita………………………………………………………………………….……….…..82

[1] C. K. Han, H. K. Kim, H. S. Pang, S. H. Pieh, and Y. H. Tak, “Dual-Plate OLED
Display (DOD) Embedded With White OLED,” Journal of Display Technology,
vol. 5, no. 12, pp. 541-545, Dec. 2009.
[2] S. W. Wen, M. T. Lee, and C. H. Chen, “Recent Development of Blue Fluorescent
OLED Materials and Devices,” Journal of Display Technology, vol. 1, no. 1, pp.
90-99, Sept. 2009.
[3] Si Yujuan, Zhao Yi, Chen Xinfa, and Liu Shiyong, “A Simple and Effective ac
Pixel Driving Circuit For Active Matrix OLED,” IEEE Trans. Electron Devices,
vol. 50, no. 4, pp. 1137-1140, Apr. 2003.
[4] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida,
“Flexible OLED Displays Using Plastic Substrates,” IEEE Journal of Selected Topics in Quantumelectronics, vol. 10, no. 1, pp. 107-114, Jan. 2004.
[5] K.H. Kim, J.Y. Lee, T.J. Park, W.S. Jeon, G.P. Kennedy, J.H. Kwon, “Small
molecule host system for solution-processed red phosphorescent OLEDs,” Synthetic Metals, vol. 160, issue 7-8, pp. 631-635, Apr. 2010.
[6] L. Hu, J. Li, J. Liu, G. Grüner, and T. Marks, “Flexible organic light-emitting
diodes with transparent carbon nanotube electrodes: problems and solutions,”
Nanotechnology, vol.21, Mar. 2010.
[7] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I.
G. Hill, M. S. Hammond, and J. West, “Organic thin-film transistor-driven
polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl.
Phys. Lett. vol. 80, no. 6, pp 1088-1090, Feb. 2002.
[8] H. Klauk, D. J. Gundlach, J. A. Nichols, and T. N. Jackson, “Pentacene organic
thin-film transistors for circuit and display applications,” IEEE Trans. Electron
Devices, vol. 46, no.6, pp. 1258-1263, Jun. 1999.
[9] H. Suzuki, H. Fukagawa, and Y. Nakajima, “A 5.8-in. phosphorescent color
AMOLED display fabricated by ink-jet printing on plastic substrate,” Journal of The Society for Information Display, vol. 17, no.12, pp. 1037-1042, Dec. 2009.
[10] Y. Fujisaki, H. Sato, T. Yamamoto, “Flexible color LCD panel driven by
low-voltage-operation organic TFT,” Journal of The Society for Information Display, vol. 15, no.7, pp. 501-506, Dec. 2007.
[11] S. H. Han, Y. H. Kim, S. H. Lee, “Stable organic thin-film transistor in a pixel for
plastic electronics,” Organic Electronics, vol. 9, no. 6, pp. 1040-1043,Dec. 2008.
[12] Y. Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju,
and H. E. Katz, “Organic complementary ring oscillators”, Appl. Phys. Lett., vol. 80, no. 7, pp 2714-2716, Feb. 1999.
[13] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D.
Theiss, “Pentacene-based radio-frequency identification circuitry,” Appl. Phys.
Lett. vol. 82, no. 22, pp 3964-3966, Apr. 2003.
[14] M. G. Kane, J. Campi, M. S. Hammond, H. Klauk, and T. N. Jackson, “Analog
and Digital Circuits Using Organic Thin-Film Transistors on Polyester
Substrates,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 534-536, Nov. 2000.
[15] W. W. Li, Y. Han, and Y. L. Chen, “Polythiophenes with Carbazole Side Chains:
Design, Synthesis and Their Application in Organic Solar Cells,”
Macromolecular Chemistry and Physics, vol. 211, no. 8, pp. 948-955, Apr. 2010.
[16] S. Berson, S. Cecioni, and M. Billon, “Effect of carbonitrile and hexyloxy
substituents on alternated copolymer of polythiophene-Performances in
photovoltaic cells,” Solar Energy Materials and Solar Cells, vol. 94, no. 5, pp.
699-708, May 2010.
[17] M. Schottler, H. Hottenroth, and B. Schluter, “Volatile Organic Compound
Abatement in Semiconductor and Solar Cell Fabrication with Respect to
Resource Depletion,” Chemical Engineering & Technology, vol. 33, no. 4, pp.
638-646, Apr. 2010.
[18] T. Someya, Y. Kato, and T. Sekitani, “Conformable, flexible, large-area networks
of pressure and thermal sensors with organic transistor active matrixes,”
Proceedings of The National Academy of Sciences of The United States of
America, vol. 102, no. 35, pp.12321-12325 Aug. 2005
[19] T. Someya, T. Sekitani, and S. A. Iba, “Alarge-area, flexible pressure sensor
matrix with organic field-effect transistors for artificial skin applications,”
Proceedings of The National Academy of Sciences of The United States of
America, vol. 101, no. 27, pp.9966-9970, Jul. 2004.
[20] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M.
Takamiya, T. Sakurai, and T. Someya, “Organic Nonvolatile Memory Transistors
for Flexible Sensor Arrays,” Science, no. 326 (5959), pp.1516-1519, Dec. 2009.
[21] M. E. Roberts, S. C. B. Mannsfeld, and N. Queralto, “Water-stable organic
transistors and their application in chemical and biological sensors,” Proceedings
of The National Academy of Sciences of The United States of America, vol. 105,
no. 34, pp.12134-12139, Aug. 2008.
[22] I. Manunza, and A. Bonfiglio, “Pressure sensing using a completely flexible
organic transistor,” Biosensors & Bioelectronics, vol. 22, no.12, pp. 2775-2779,
Jun. 2007.
[23] J. W. Jeong, Y. D. Lee, Y. M. Kim, “The response characteristics of a gas sensor
based on poly-3-hexylithiophene thin-film transistors,” Sensors and Actuators
B-Chemical, vol. 146, no. 1, pp. 40-45, Apr. 2010.
[24] S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on
contact resistance of top-contact pentacene TFTs,” Synthetic Metals vol. 156, pp.
196–201, 2006.
[25] K. D. Jung, Y. C. Kim, B. J. Kim, B. G. Park, H. Shin, and J. D. Lee, “An
Analytic Current–Voltage Equation for Top-Contact Organic Thin Film
Transistors Including the Effects of Variable Series Resistance,” Jpn. J. Appl.
Phys., vol. 47, pp. 3174-3178, 2008.
[26] D. Gupta, and M. Katiyar, “An analysis of the difference in behavior of top and
bottom contact organic thin film transistors using device simulation,” Organic
Electronics, vol. 10, no. 5, pp. 775-784, Aug. 2009.
[27] K. D. Jung, Y. C. Kim, and H. Shin, “A study on the carrier injection mechanism
of the bottom-contact pentacene transistor,” Appl. Phys. Lett. vol. 96, no. 10,
Mar. 2010.
[28] M. W. Lee and C. K. Song, “Oxygen Plasma Effects on Performance of
Pentacene Thin Film Transistor,” Jpn. J. Appl. Phys., vol. 42, pp. 4218-4221,
2003.
[29] E. J. Meijer, C. Tanase, P. W. M. Blom, E. van Veenendaal, B.-H. Huisman, D.
M. de Leeuw, and T. M. Klapwij, “Switch-on voltage in disordered organic
field-effect transistors,” Appl. Phys. Lett. vol. 80, pp. 3838, 2002
[30] S. Y. Kwak, C. G. Choi, and B. S. Bae, “Effect of Surface Energy on Pentacene
Growth and Characteristics of Organic Thin-Film Transistors,” Electrochemical
and Solid State Letters, vol. 12, no. 8, pp. G37-G39, 2009.
[31] S. Y. Kim, T. Ahn, and S. Pyo, ”Surface modified polymeric gate insulators for
pentacene organic thin-film transistors,” Current Applied Physics, vol. 9, no. 5,
pp. 913-918, Sep. 2009.
[32] P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato,
and P. Calas, “Improving charge injection in organic thin-film transistors with
thiol-based self-assembled monolayers,” Organic Electronics, vol. 9, pp. 419-424, 2008.
[33] G. W. Hyung, J. Park, and J. H. Kim, “Storage stability improvement of
pentacene thin-film transistor using polyimide passivation layer fabricated by
vapor deposition polymerization,” Solid-State Electronics, vol. 54, no. 4, pp.
439-442, Apr. 2010.
[34] H. N. Lee, Y. G. Lee, I. H. Kob, E. C. Hwang, and S. K. Kang, “Organic
passivation layers for pentacene organic thin-film transistors,” Current Applied
Physics, vol. 8, no. 5, pp. 626-630, Aug. 2008.
[35] W. S. Wong, K. E. Paul, and R. A. Street, “Digital-lithographic processing for
thin-film transistor array fabrication,” Journal of Non-Crystalline Solids,” vol.
338-340, no. 15, pp. 710-714, Jun. 2004.
[36] Z. B. Ding and B. Ganem, “of patterned organic thin film by low-energy electron
beam lithography and surface-initiated ring-opening metathesis polymerization,”
Canadian Journal of Chemistry-revue Canadienne De Chimie, vol. 84, no. 10, pp. 1254-1258, Oct. 2006.
[37] I. Kymissis, A. I. Akinwande, and V. Bulovic “A Lithographic Process for
Integrated Organic Field-Effect Transistors,” Journal of Display Technology, vol.
1, no. 2, pp. 289-294, Dec. 2005.
[38] Y. X. Lu, W. H. Lee, H. S. Lee, “Low-voltage organic transistors with titanium
oxide/polystyrene bilayer dielectrics,” Appl. Phys. Lett., vol. 94, no. 11, pp. 3838,
2009.
[39] L. A. Majewski, R. Schroeder, and M. Grell, “Low-Voltage, High-Performance
Organic Field-Effect Transistors with an Ultra-Thin TiO2 Layer as Gate
Insulator,” Adv. Funct. Mater. Vol. 15, no. 6, pp. 1017-1022, 2005.
[40] S. Ono, S. Seki, R. Hirahara, Y. Tominari, and J. Takeya, “High-mobility,
low-power, and fast-switching organic field-effect transistors with ionic liquids,”
Appl. Phys. Lett., vol. 92, no. 10, pp. 103313, 2008.
[41] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, “Low-voltage
and high-field-effect mobility organic transistors with a polymer insulator,” Appl. Phys. Lett., vol. 88, no. 7, pp. 072101, 2006.
[42] C. Bartic, H. Jansen, and A. Campitelli, “Ta2O5 as gate dielectric material for
low-voltage organic thin-film transistors,” ORGANIC ELECTRONICS, vol. 3,
no. 2, pp. 65-72, 2002.
[43] F. M. Li, A. Nathan, and Y. L. Wu, “Organic thin-film transistor integration using
silicon nitride gate dielectric,” Appl. Phys. Lett., vol. 90, no. 13, pp. 133514, 2007.
[44] Y. H. Kim, J. H. Kwon, and S. I. Shin, “Organization of Pentacene Molecules on
Anisotropic Ultrathin HfO2/Al2O3 Templates for Organic Thin-Film Transistors
Using an Ion-Beam Treatment,” Electrochemical and Solid State Letters, vol. 12,
no. 8, pp. H305-H308, 2009.
[45] W. H. Lee, C.C. Wang, W. T. Chen, and J. C. Ho, “Characteristic of Organic Thin
Film Transistor with a High-k Insulator of Nano-TiO2 and Polyimide Blend,”
Jpn. J. Appl. Phys., vol. 47, pp. 8955-8960, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳慧女、林明傑(2003)。兒童性侵害案件中的專家證人與兒童作證。社區發展季刊,103,312-324。
2. 陳文琪(2004c,5月27日)。建立一個友善且公平的法院—談性侵害案件之交互詰問(三)。法務通訊,2188,3-4版。
3. 蔡田木(2000)。性侵害犯罪被害特性及被害反應之研究。中央警察大學學報,37,331-349。
4. 黃富源(1999)。強、輪姦被害人特質及其創傷理論之探討。中央警察大學學報,34,227-261。
5. 陳文琪(2004b,5月20日)。建立一個友善且公平的法院—談性侵害案件之交互詰問(二)。法務通訊,2187,3-5版。
6. 陳文琪(2004a,5月13日)。建立一個友善且公平的法院—談性侵害案件之交互詰問(一)。法務通訊,2186,2-5版。
7. 張錦麗(1999)。性騷擾對被害人之傷害及防治之道。社區發展季刊,86,216-225。
8. 王燦槐(2005)。性侵害防治中心在司法流程中的角色-減少性侵害被害人重複陳述作業之評析,亞洲家庭暴力與性侵害期刊,1:1,111-136。
9. 吳志光(2001)。性侵害案件受害者創傷反應與司法程序。司法改革雜誌,34,41-42。
10. 張麗卿(2003)。交互詰問之新規定。東海大學法學研究,18,1-29。
11. 張錦麗(1997)。強暴犯罪的本質與防治之道,社區發展季刊,79,71-81。
12. 張碧琴(1998)。真實與謊言—對亂倫生還者二度創傷工作之歷程。中華心理衛生學刊,11(1),33-51。
13. 姚淑文、張錦麗(2004)。「性侵害案件減少被害人重複陳述方案」推動後的結果與未來發展方向。律師雜誌,301,40-54。
14. 張錦麗、顏玉如(2003)。臺灣地區家庭暴力與性侵害基礎型防治模式—個案管理工作策略。社區發展季刊,102,242-260。
15. 范國勇(2000)。強姦犯罪問題與被害人創傷症之探討,警學叢刊,31(3),69-65。