|
[1] C. K. Han, H. K. Kim, H. S. Pang, S. H. Pieh, and Y. H. Tak, “Dual-Plate OLED Display (DOD) Embedded With White OLED,” Journal of Display Technology, vol. 5, no. 12, pp. 541-545, Dec. 2009. [2] S. W. Wen, M. T. Lee, and C. H. Chen, “Recent Development of Blue Fluorescent OLED Materials and Devices,” Journal of Display Technology, vol. 1, no. 1, pp. 90-99, Sept. 2009. [3] Si Yujuan, Zhao Yi, Chen Xinfa, and Liu Shiyong, “A Simple and Effective ac Pixel Driving Circuit For Active Matrix OLED,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1137-1140, Apr. 2003. [4] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED Displays Using Plastic Substrates,” IEEE Journal of Selected Topics in Quantumelectronics, vol. 10, no. 1, pp. 107-114, Jan. 2004. [5] K.H. Kim, J.Y. Lee, T.J. Park, W.S. Jeon, G.P. Kennedy, J.H. Kwon, “Small molecule host system for solution-processed red phosphorescent OLEDs,” Synthetic Metals, vol. 160, issue 7-8, pp. 631-635, Apr. 2010. [6] L. Hu, J. Li, J. Liu, G. Grüner, and T. Marks, “Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions,” Nanotechnology, vol.21, Mar. 2010. [7] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. vol. 80, no. 6, pp 1088-1090, Feb. 2002. [8] H. Klauk, D. J. Gundlach, J. A. Nichols, and T. N. Jackson, “Pentacene organic thin-film transistors for circuit and display applications,” IEEE Trans. Electron Devices, vol. 46, no.6, pp. 1258-1263, Jun. 1999. [9] H. Suzuki, H. Fukagawa, and Y. Nakajima, “A 5.8-in. phosphorescent color AMOLED display fabricated by ink-jet printing on plastic substrate,” Journal of The Society for Information Display, vol. 17, no.12, pp. 1037-1042, Dec. 2009. [10] Y. Fujisaki, H. Sato, T. Yamamoto, “Flexible color LCD panel driven by low-voltage-operation organic TFT,” Journal of The Society for Information Display, vol. 15, no.7, pp. 501-506, Dec. 2007. [11] S. H. Han, Y. H. Kim, S. H. Lee, “Stable organic thin-film transistor in a pixel for plastic electronics,” Organic Electronics, vol. 9, no. 6, pp. 1040-1043,Dec. 2008. [12] Y. Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, and H. E. Katz, “Organic complementary ring oscillators”, Appl. Phys. Lett., vol. 80, no. 7, pp 2714-2716, Feb. 1999. [13] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, “Pentacene-based radio-frequency identification circuitry,” Appl. Phys. Lett. vol. 82, no. 22, pp 3964-3966, Apr. 2003. [14] M. G. Kane, J. Campi, M. S. Hammond, H. Klauk, and T. N. Jackson, “Analog and Digital Circuits Using Organic Thin-Film Transistors on Polyester Substrates,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 534-536, Nov. 2000. [15] W. W. Li, Y. Han, and Y. L. Chen, “Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells,” Macromolecular Chemistry and Physics, vol. 211, no. 8, pp. 948-955, Apr. 2010. [16] S. Berson, S. Cecioni, and M. Billon, “Effect of carbonitrile and hexyloxy substituents on alternated copolymer of polythiophene-Performances in photovoltaic cells,” Solar Energy Materials and Solar Cells, vol. 94, no. 5, pp. 699-708, May 2010. [17] M. Schottler, H. Hottenroth, and B. Schluter, “Volatile Organic Compound Abatement in Semiconductor and Solar Cell Fabrication with Respect to Resource Depletion,” Chemical Engineering & Technology, vol. 33, no. 4, pp. 638-646, Apr. 2010. [18] T. Someya, Y. Kato, and T. Sekitani, “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” Proceedings of The National Academy of Sciences of The United States of America, vol. 102, no. 35, pp.12321-12325 Aug. 2005 [19] T. Someya, T. Sekitani, and S. A. Iba, “Alarge-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proceedings of The National Academy of Sciences of The United States of America, vol. 101, no. 27, pp.9966-9970, Jul. 2004. [20] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, “Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays,” Science, no. 326 (5959), pp.1516-1519, Dec. 2009. [21] M. E. Roberts, S. C. B. Mannsfeld, and N. Queralto, “Water-stable organic transistors and their application in chemical and biological sensors,” Proceedings of The National Academy of Sciences of The United States of America, vol. 105, no. 34, pp.12134-12139, Aug. 2008. [22] I. Manunza, and A. Bonfiglio, “Pressure sensing using a completely flexible organic transistor,” Biosensors & Bioelectronics, vol. 22, no.12, pp. 2775-2779, Jun. 2007. [23] J. W. Jeong, Y. D. Lee, Y. M. Kim, “The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors,” Sensors and Actuators B-Chemical, vol. 146, no. 1, pp. 40-45, Apr. 2010. [24] S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on contact resistance of top-contact pentacene TFTs,” Synthetic Metals vol. 156, pp. 196–201, 2006. [25] K. D. Jung, Y. C. Kim, B. J. Kim, B. G. Park, H. Shin, and J. D. Lee, “An Analytic Current–Voltage Equation for Top-Contact Organic Thin Film Transistors Including the Effects of Variable Series Resistance,” Jpn. J. Appl. Phys., vol. 47, pp. 3174-3178, 2008. [26] D. Gupta, and M. Katiyar, “An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation,” Organic Electronics, vol. 10, no. 5, pp. 775-784, Aug. 2009. [27] K. D. Jung, Y. C. Kim, and H. Shin, “A study on the carrier injection mechanism of the bottom-contact pentacene transistor,” Appl. Phys. Lett. vol. 96, no. 10, Mar. 2010. [28] M. W. Lee and C. K. Song, “Oxygen Plasma Effects on Performance of Pentacene Thin Film Transistor,” Jpn. J. Appl. Phys., vol. 42, pp. 4218-4221, 2003. [29] E. J. Meijer, C. Tanase, P. W. M. Blom, E. van Veenendaal, B.-H. Huisman, D. M. de Leeuw, and T. M. Klapwij, “Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett. vol. 80, pp. 3838, 2002 [30] S. Y. Kwak, C. G. Choi, and B. S. Bae, “Effect of Surface Energy on Pentacene Growth and Characteristics of Organic Thin-Film Transistors,” Electrochemical and Solid State Letters, vol. 12, no. 8, pp. G37-G39, 2009. [31] S. Y. Kim, T. Ahn, and S. Pyo, ”Surface modified polymeric gate insulators for pentacene organic thin-film transistors,” Current Applied Physics, vol. 9, no. 5, pp. 913-918, Sep. 2009. [32] P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, and P. Calas, “Improving charge injection in organic thin-film transistors with thiol-based self-assembled monolayers,” Organic Electronics, vol. 9, pp. 419-424, 2008. [33] G. W. Hyung, J. Park, and J. H. Kim, “Storage stability improvement of pentacene thin-film transistor using polyimide passivation layer fabricated by vapor deposition polymerization,” Solid-State Electronics, vol. 54, no. 4, pp. 439-442, Apr. 2010. [34] H. N. Lee, Y. G. Lee, I. H. Kob, E. C. Hwang, and S. K. Kang, “Organic passivation layers for pentacene organic thin-film transistors,” Current Applied Physics, vol. 8, no. 5, pp. 626-630, Aug. 2008. [35] W. S. Wong, K. E. Paul, and R. A. Street, “Digital-lithographic processing for thin-film transistor array fabrication,” Journal of Non-Crystalline Solids,” vol. 338-340, no. 15, pp. 710-714, Jun. 2004. [36] Z. B. Ding and B. Ganem, “of patterned organic thin film by low-energy electron beam lithography and surface-initiated ring-opening metathesis polymerization,” Canadian Journal of Chemistry-revue Canadienne De Chimie, vol. 84, no. 10, pp. 1254-1258, Oct. 2006. [37] I. Kymissis, A. I. Akinwande, and V. Bulovic “A Lithographic Process for Integrated Organic Field-Effect Transistors,” Journal of Display Technology, vol. 1, no. 2, pp. 289-294, Dec. 2005. [38] Y. X. Lu, W. H. Lee, H. S. Lee, “Low-voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics,” Appl. Phys. Lett., vol. 94, no. 11, pp. 3838, 2009. [39] L. A. Majewski, R. Schroeder, and M. Grell, “Low-Voltage, High-Performance Organic Field-Effect Transistors with an Ultra-Thin TiO2 Layer as Gate Insulator,” Adv. Funct. Mater. Vol. 15, no. 6, pp. 1017-1022, 2005. [40] S. Ono, S. Seki, R. Hirahara, Y. Tominari, and J. Takeya, “High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids,” Appl. Phys. Lett., vol. 92, no. 10, pp. 103313, 2008. [41] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, “Low-voltage and high-field-effect mobility organic transistors with a polymer insulator,” Appl. Phys. Lett., vol. 88, no. 7, pp. 072101, 2006. [42] C. Bartic, H. Jansen, and A. Campitelli, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors,” ORGANIC ELECTRONICS, vol. 3, no. 2, pp. 65-72, 2002. [43] F. M. Li, A. Nathan, and Y. L. Wu, “Organic thin-film transistor integration using silicon nitride gate dielectric,” Appl. Phys. Lett., vol. 90, no. 13, pp. 133514, 2007. [44] Y. H. Kim, J. H. Kwon, and S. I. Shin, “Organization of Pentacene Molecules on Anisotropic Ultrathin HfO2/Al2O3 Templates for Organic Thin-Film Transistors Using an Ion-Beam Treatment,” Electrochemical and Solid State Letters, vol. 12, no. 8, pp. H305-H308, 2009. [45] W. H. Lee, C.C. Wang, W. T. Chen, and J. C. Ho, “Characteristic of Organic Thin Film Transistor with a High-k Insulator of Nano-TiO2 and Polyimide Blend,” Jpn. J. Appl. Phys., vol. 47, pp. 8955-8960, 2008.
|