跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:項燕君
研究生(外文):Yen-Chun Shiang
論文名稱:發光金奈米點之生物應用
論文名稱(外文):Bioapplications of Luminescent Gold Nandots
指導教授:張煥宗張煥宗引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:54
中文關鍵詞:發光金奈米點葡萄糖感測器
外文關鍵詞:luminescent gold nandotsglucosesensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中利用粒徑為2 nm且表面修飾11-巰基十一酸(11-Mercaptoundecanoic acid,11-MUA)的金奈米點(gold nanodots,Au NDs),簡稱11-巰基十一酸–金奈米點(11-MUA–Au NDs),偵測水溶液中的過氧化氫(hydrogen peroxide,H2O2)及葡萄糖(glucose)。11-MUA–Au NDs具有放光的特性,並且有大的Stokes shift(145 nm)、長的放光生命期(τ1與τ2分別為36和231 ns),以及良好的量子產率(quantum yields,QYs = 3.1 %)等光學性質,適合用於生物樣品分析,不受背景基質的干擾。
強氧化劑H2O2與11-MUA–Au NDs混合反應後,氧化11-MUA,改變Au NDs的表面特性,使得11-MUA–Au NDs螢光減弱,且螢光下降的幅度隨著H2O2的濃度增加而上升,在最佳化的反應條件(溫度65℃,反應30分鐘),H2O2的偵測極限(limit of detection,LOD)為30 nM,其線性範圍落在100 nM到1.0 mM。與H2O2反應後的Au NDs再添加進11-MUA,可使其螢光值回復,藉由調控所添加11-MUA的濃度,可以重複使用此一偵測系統。
測定溶液中葡萄糖濃度時,混合葡萄糖溶液與葡萄糖氧化酶(glucose oxidase,GOx),使其反應產生H2O2,再加入11-MUA–Au NDs感測器至反應完的溶液中,即可進行葡萄糖濃度偵測。與血糖中其他醣類(果糖、乳糖和麥芽糖)相比,對葡萄糖具有較高的選擇性(大於30倍),且偵測極限達到1.0 μM,可應用在血清樣品中葡萄糖濃度測定,並有著操作簡便、便宜、再現性高且精準的優點。
This thesis focuses on a novel gold nanodot (Au ND)-based sensor for the determination of hydrogen peroxide (H2O2) in aqueous solution and, vicariously, of glucose in serum with high sensitivity and selectivity. The fluorescence intensity of 11-mercaptoundecanoic acid-bound Au NDs (11-MUA–Au NDs) was quenched in the presence of H2O2 as a result of the oxidation of 11-MUA mediated by H2O2. The decrease in fluorescence intensity was proportional to the logarithm of the concentration of H2O2 over the range of 100 nM–1.0 mM, with a limit of detection (LOD) of 30 nM at a signal-to-noise ratio of 3. After each assay, the addition of 11-MUA restored the fluorescence; thus, the sensor system was readily regenerated. To optimize the sensitivity of the detector toward glucose, a two-step analysis assay had been developed: (i) glucose was reacted with glucose oxidase and (ii) the produced H2O2 was detected using the 11-MUA-Au ND nanosensor. This sensing system provided high selectivity (30-fold or more) for glucose over fructose, lactose, and maltose, with an LOD of 1.0 μM. Because the 11-MUA-Au ND nanosensor has a long Stokes shift (145 nm), matrix interference was minimal, allowing simple sample preparation and providing excellent linearity. This research validated the practicality of this sensing system by analyzing glucose in serum. This approach provides the practical benefits of simplicity, low cost, reproducibility, and precision.
口試委員會審定書
謝誌I
中文摘要III
英文摘要V
目錄VII
圖目錄IX
第一章 螢光金奈米材料簡介.1
1.1 螢光金奈米材料
1.1.1 以聚合物穩定之金奈米團簇3
1.1.2 以硫醇分子穩定之金奈米團簇5
1.1.3 發光金奈米點6
1.1.4 應用10
1.2 葡萄糖與糖尿病11
1.3 時間解析光激螢光13
1.4 研究動機14
1.5 參考文獻15
1.6 本章圖表18
第二章 利用金奈米螢光感測器偵測過氧化氫及葡萄糖24
2.1 前言24
2.2 實驗方法25
2.2.1 實驗試藥25
2.2.2 螢光金奈米點合成26
2.2.3 螢光方法分析過氧化氫及葡萄糖28
2.3 實驗結果與討論28
2.3.1 偵測過氧化氫機制的鑑定28
2.3.2 pH值及溫度對過氧化氫偵測的影響30
2.3.3以時間解析螢光系統於生物樣品中偵測過氧化氫32
2.3.3 葡萄糖感測器的靈敏度及專一性33
2.4 結論34
2.5 參考文獻35
2.6 本章圖表39
第一章
[1] De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225–4241.
[2] Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W.-D.; Hkkinen, H.; Barnett, R. N.; Landman, U. J. Phys. Chem. A 1999, 103, 9573–9578.
[3] Lopez, N.; Nørskov, J. K. J. Am. Chem. Soc. 2002, 124, 11262–11263.
[4] (a)Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957–1962. (b) Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K. ACS Nano 2009, 3, 80–86.
[5] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078–1081.
[6] Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Nano Lett. 2006, 6, 662–668.
[7] Mie, G. Ann. Phys. 1908, 330, 377–445.
[8] Bigioni, T. P.; Whetten, R. L.; Dag, Ö. J. Phys. Chem. B 2000, 104, 6983–6986.
[9] Grhn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J. Macromolecules 2000, 33, 6042–6050.
[10] Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M.; Vezmar, I.; Whetten, R. L. Chem. Phys. Lett. 1997, 266, 91–98.
[11] Duan, H.; Nie, S. J. Am. Chem. Soc. 2007, 129, 2412–2413.
[12] Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115–2120.
[13] Touboul, D.; Halgand, F.; Brunelle, A.; Kersting, R.; Tallarek, E.; Hagenhoff, B.; Laprevote, O. Anal. Chem. 2004, 76, 1550–1559.
[14] Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M. J.; Laromaine, A.; McComb, D.W.; Stevens, M. M.; Wang, Y.; Petit, L.; Barenitn, C.; Spiller, D. G.; Cooper, A. I.; Lévy, R. Chem. Commun. 2008, 3986–3988.
[15] Zheng, J.; Petty, J. T.; Dickson, R. M. J. Am. Chem. Soc. 2003, 125, 7780–7781.
[16] Zheng, J.; Zhang C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402(1–4).
[17] Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430–433.
[18] Yang, Y.; Chen, S. Nano Lett. 2003, 3, 75–79.
[19] Templeton, A. C.; Chen, S.; Gross, S. M.; Murray, R. W. Langmuir 1999, 15 66–76.
[20] Templeton, A. C.; Zamborini, F. P.; Wuelfing, W. P.; Murray, R. W. Langmuir 2000, 16, 6682–6688.
[21] Beversluis, M. R.; Bouhelier, A.; Novotny, L. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 115433.
[22] Hodes, G. Adv. Mater. 2007, 19, 639–655.
[23] Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2002, 106, 3410–3415.
[24] Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261–5270.
[25] Wang, G.; Guo, R.; Kalyuzhny, G.; Choi, J.-P.; Murray, R. W. J. Phys. Chem. B 2006, 110, 20282–20289.
[26] Duan, H. W.; Nie, S. M. J. Am. Chem. Soc. 2007, 129, 2412–2415.
[27] J. Zheng, PhD thesis, Georgia Institute of Technology, 2005.
[28] Negishi, Y.; Tsukuda, T. Chem. Phys. Lett. 2004, 383, 161–165.
[29] Yam, V. W.-W.; Cheng, E. C.-C.; Chem. Soc. Rev. 2008, 37, 1806-1813.
[30] White-Morris, R. L.; Olmstead, M. M.; Jiang, F.; Tinti, D. S.; Balch, A. L. J. Am. Chem. Soc. 2002, 124, 2327–2336.
[31] Forward, J. M.; Bohmann, D.; Fackler, J. P.; Staples, R. J. Inorg. Chem. 1995, 34, 6330–6336.
[32] Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angew. Chem. Int. Ed. 2007, 46, 6824–6828.
[33] Duff, D. G.; Baiker, A.; Edwards, P. P. Langmuir 1993, 9, 2301–2309.
[34] Webelements periodic table. http://www.webelements.com
[35] Vogler, A.; Kunkely, H. Coord. Chem. Rev. 2001, 219–221, 489–507.
[36] Huang, C.-C.; Liao, H.-Y.; Shiang, Y.-C.; Lin, Z.-H.; Yang, Z.; Chang, H.-T. J. Mater. Chem. 2009, 19, 755–759.
[37] Huang, C.-C.; Chen, C.-T.; Shiang, Y.-C.; Lin, Z.-H.; Chang, H.-T. Anal. Chem. 2009, 81, 875–882.
[38] Huang, C. -C.; Yang, Z.; Lee, K. -H.; Chang H. -T. Angew. Chem. Int. Ed. 2007, 46, 6824–6828.
[39]行政院衛生署http://www.doh.gov.tw/CHT2006/index_populace.aspx
[40] Pickup, J. C.; Hussain, F.; Evans, N. D.; Rolinski, O. J.; Birch, D. J.S. Biosensors and Bioelectronics 2005, 20, 2555–2565.

第二章
[1] Poole, L. B.; Nelson, K. J. Curr. Opin. Chem. Biol. 2008, 12, 18–24.
[2] Balaban, R. S.; Nemoto, S.; Finkel, T. Cell 2005, 120, 483–495.
[3] Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728.
[4] (a) Wu, M.; Lin, Z.; Schäferling, M.; Dürkop, A.; Wolfbeis, O. S. Anal. Biochem. 2005, 340, 66–73.
[5] Lacy, F.; Gough, D. A.; Schmid-Schönbein, G. W. Free Radical Biol. Med. 1998, 25, 720–727.
[6] Maurel, A.; Hernandez, C.; Kunduzova, O.; Bompart, G.; Cambon, C.; Parini, A.; Francés, B. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, 1460–1467.
[7] Dickinson, B. C.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 9638–9639.
[8] Yuan, J.; Guo, W.; Wang, E. Anal. Chem. 2008, 80, 1141–1145.
[9] Lyon, J. L.; Stevenson, K. J. Anal. Chem. 2006, 78, 8518–8525.
[10] Yang, Y.; Chen, S. Nano Lett. 2003, 3, 75–79.
[11] Link, S.; El-Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331–366.
[12] Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261–5270.
[13] Hodes, G. Adv. Mater. 2007, 19, 639–655.
[14] Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754–3755.
[15] Wang, L.; Wang, K.; Santra, S.; Zhao, J.; Hilliard, L. R.; Smith, J. E.; Tan W. Anal. Chem. 2006, 78, 646-654.
[16] Huang, T.; Murray, R. W. J. Phys. Chem. B 2001, 105, 12498–12502.
[17] Yang, Z.; Lin, Y.-W.; Tseng, W.-L.; Chang, H.-T. J. Mater. Chem. 2005, 15, 2450–2454.
[18] Wang, G.; Guo, R.; Kalyuzhny, G.; Choi, J.-P.; Murray, R. W. J. Phys. Chem. B 2006, 110, 20282–20289.
[19] Li, W.; Yuan, R.; Chai, Y.; Hong, C.; Zhuo, Y. J. Electrochem. Soc. 2008, 155, 97–103.
[20] Bauer, R.; Fetter, M. C.; Marino, R. A. Clinical Chem. 1982, 28, 1594.
[21] Sato, Y.; Murakami, T.; Yoshioka, K.; Niwa, O. Anal. Bioanal. Chem. 2008, 391, 2527–2532.
[22] Tang, B.; Cao, L.; Xu, K.; Zhuo, L.; Ge, J.; Li, Q.; Yu, L. Chem. Eur. J. 2008, 14, 3637–3644.
[23] Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angew. Chem. Int. Ed. 2007, 46, 6824–6828.
[24] Huang, C.-C.; Chiu, S.-H.; Huang, Y.-F.; Chang, H.-T. Anal. Chem. 2007, 79, 4798–4804.
[25] Duff, D. G.; Baiker, A.; Edwards, P. P. Langmuir 1993, 9, 2301–2309.
[26] Forward, J. M.; Bohmann, D.; Fackler, J. P.; Staples, R. J. Inorg. Chem. 1995, 34, 6330–6336.
[27] Yang, Y.; Chen, S. Nano Lett. 2003, 3, 75–79.
[28] Wang, G.; Guo, R.; Kalyuzhny, G.; Choi, J.-P.; Murray, R. W. J. Phys. Chem. B 2006, 110, 20282–20289.
[29] Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409–431.
[30] Yam, V. W.-W.; Cheng, E. C.-C.; Chem. Soc. Rev. 2008, 37, 1806-1813.
[31] Huang, C.-C.; Liao, H.-Y.; Shiang, Y.-C.; Lin, Z.-H.; Yang, Z.; Chang, H.-T. J. Mater. Chem. 2009, 19, 755–759.
[32] Vogler, A.; Kunkely, H. Coord. Chem. Rev. 2001, 219–221, 489–507.
[33] Duan, H.; Nie, S. J. Am. Chem. Soc. 2007, 129, 2412–2413.
[34] Negishi, Y.; Tsukuda, T. Chem. Phys. Lett. 2004, 383, 161–165.
[35] Whetten, R. L.; Price, R. C. Science 2007, 318, 407–408.
[36] Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754–3755.
[37] Buffat, P.-A.; Flüeli, M.; Spycher, R.; Stadelmann, P.; Borel, J.-P. Faraday Discuss. 1991, 92, 173–187.
[38] Ackerman, G. A.; Yang, J.; Wolken, K. W. J. Histochem. Cytochem. 1983, 31, 433-440.
[39] (a) Quesada, A. R.; Byrnes, R. W.; Krezoski, S. O.; Petering, D. H. Arch. Biochem. Biophys. 1996, 334, 241–250. (b) Dasog, M.; Scott, R. W. J. Langmuir 2007, 23, 3381–3387.
[40] Tanaka, A.; Takeda, Y.; Nagasawa, T.; Takahashi, K. Solid State Commun. 2003, 126, 191–196.
[41] McNeillie, A.; Brown, D. H.; Smith, W. E.; Gibson, M.; Watson, L. J. Chem. Soc. Dalton Trans. 1980, 767–770.
[42] Smalley, J. F.; Chalfant, K.; Feldberg, S. W.; Nahir, T. M.; Bowden, E. F. J. Phys. Chem. B 1999, 103, 1676-1685.
[43] (a) Hazarika, P.; Ceyhan, B.; Niemeyer, C. M. Angew. Chem. Int. Ed. 2004, 43, 6469–6471. (b) Zhao, W.; Chiuman, W.; Brook, M. A.; Li, Y. ChemBioChem 2007, 8, 727–731.
[44] Xu, J.-J.; Feng, J.-J.; Zhong, X.; Chen, H.-Y. Electroanalysis 2008, 20, 507–512.
[45] M. Kobayashi, H. Nishara, S. Kobayashi, J. Appl. Glycosi. 1999, 46, 1–7.
[46] T. Kawasaki, H. Akanuma, T. Yamanouchi, Diabetes Care 2002, 25, 353–357.
[47] O. M. Pitkäene, H. Vanhanen, E. Pitkäene, Scand. J. Clin. Lab. Invest. 1999, 59, 607–612.
[48] Miland, E.; Ordieres, A. J. M.; Blanco, P. T.; Smyth, M. R.; Fágáin, C. Ó. Talanta 1996, 43, 785–796.
[49] Huang, C.-P.; Li, Y.-K.; Chen, T.-M. Biosens. Bioelectron. 2007, 22, 1835–1838.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊