跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃曉婷
研究生(外文):Shiau-Ting HUANG
論文名稱:炸油對大鼠腹部脂質堆積、脂肪細胞分化及胰島素敏感性研究
論文名稱(外文):Effect of oxidized frying oil on abdominal fat accumulation, adipocyte differentiation and insulin sensitivity of rats
指導教授:趙蓓敏
指導教授(外文):Pei-Min Chao
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:133
中文關鍵詞:炸油魚油腹部脂肪脂肪細胞分化胰島素敏感性
外文關鍵詞:frying oilfish oilabdominal fatadipocyte differentiationinsulin sensitivity
相關次數:
  • 被引用被引用:4
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
Peroxisome proliferator-activated receptor (PPAR)屬固醇類荷爾蒙接受器家族(steroid hormone nuclear receptor superfamily)成員之一,有3種isoforms分別為PPARa、d及g。PPARa主要表現於肝臟,負責調控脂質代謝相關基因轉錄作用。而PPARg則主要表現於脂肪組織,調控脂肪細胞分化及葡萄糖代謝相關基因表現。已知魚油與炸油均可活化大鼠肝臟中PPARa,增加脂肪酸代謝基因表現,並促進b-oxidation,而降低了肝(血)脂質。在我們先前研究也觀察到,炸油如同魚油可抑制高油飲食誘發的腹部脂質堆積及脂肪細胞肥大。但魚油與炸油是否會影響脂肪細胞分化,及炸油對葡萄糖代謝影響仍不清楚。本研究目的為探討魚油與炸油在大鼠抗體脂堆積效應可能原因,及對脂肪細胞分化之影響,並且初步評估炸油對胰島素敏感性之作用。將48隻SD (Sprague-Dawley)公成鼠(約100 g)分為4組,每組12隻,分別給予5 % (g/g)新鮮黃豆油(LF,低油對照組)或20 % (g/g)新鮮黃豆油(HF,高油對照組)、20 %炸油(HO)或20 %魚油(HFO)飼料,炸油來自新鮮黃豆油以205 ± 5 ℃油炸麵片24小時,餵食12週。結果顯示大鼠餵食魚油或炸油會增加肝、腎重(p<0.0001),降低體重增加量(p<0.0001)、飼料效率(p<0.0001)、腹部脂肪包括副睪脂(epididymal; EP)及腹膜後脂肪(retroperitoneal; RE)脂肪組織堆積(p<0.0001 for EP and RE)、肝中總脂質(p<0.0001)、血中總脂質(p<0.0001)及平均脂肪細胞三酸甘油酯堆積(p<0.0001 for RE)情形;且餵食炸油也使脂肪細胞變小(p=0.05 for EP and RE)。
此外HO組脂肪組織有最高的脂質合成酵素活性,包括glycerol-3-phosphate dehydrogenase (G3PDH)(p<0.01 for RE)與lipoprotein lipase (LPL) (p<0.05 for EP and p=0.05 for RE),但HO與HFO組的basal lipolysis rate (p<0.05 for EP and RE)均顯著高於HF組。因此,炸油與魚油飲食促進脂肪組織脂解可部分解釋其抗體脂堆積效應。
以北方點墨法偵測脂肪細胞分化指標與脂肪細胞激素基因表現發現,與HF組相較,魚油降低PPARg (p<0.05 for RE)、LPL (p=0.05 for RE)、leptin (p<0.005 for EP and p<0.0001 for RE)及adiponectin (p<0.0005 for RE) mRNA表現;炸油增加PPARg (p=0.05 for EP)、降低leptin (p<0.0001 for RE) mRNA表現。可見魚油似乎抑制脂肪細胞分化,而炸油雖也顯著抑制體脂生成,但並未抑制脂肪細胞分化。
追蹤比較LF、HF及HO三組9週內之禁食全血葡萄糖,及禁食血清胰島素均無差異,但HO組在第9週胰島素與血糖有較高趨勢。在第3週及第9週口服葡萄糖耐受試驗曲線(OGTT)曲線變化及曲線下面積(AUC)顯示,餵食炸油之大鼠葡萄糖耐受有較差情形(AUC, p<0.001 for 3th wk. and p<0.01 for 9th wk.)。
以上結果顯示,以炸油作為高脂飲食油脂來源,會降低高脂飲食誘發之成熟大鼠脂肪細胞肥大,但並不抑制脂肪細胞分化,此抗體脂堆積效應,除可以活化肝臟PPARa解釋外,並與促進脂肪細胞脂解(lipolysis)相關。另外,與新鮮油相較,炸油似乎有可能導致胰島素抗性之趨勢。
Abstract
Peroxisome proliferator-activated receptor (PPAR) is a member of steroid hormone receptor superfamily of ligand-activated transcription factors. To date, three isoforms have been identified, PPARa, d and g, encoded by three separate genes. PPARa is expressed predominantly in lipid metabolizing tissue, such as liver where it plays a role in lipid catabolism. PPARg, on the other hand, is mainly expressed in adipose tissue and has a critical role in adipocyte differentiation and glucose metabolism. We had previously proved that dietary fish oil and oxidized frying oil (OFO) could activate PPARa and increase fatty acid oxidation in liver. Thus, lowering the liver (serum) lipids in rats. The anti-adiposity effect of OFO was also observed as well as fish oil. However, the effect of OFO on adipocyte differentiation, and glucose metabolism had never been explored. The aim of this study was to investigate the morphological change and differentiation status of adipocytes in rats fed with OFO or fish oil. In addition, the insulin sensitivity was also evaluated in rats fed with OFO. 48 SD male rats (about 100 g) were divided into four groups, receiving diet contain 5% (g/g) fresh soybean oil (LF), 20% fresh soybean oil (HF), OFO (HO) or fish oil (HFO), respectively. The OFO was prepared by frying wheat dough sheets in soybean oil at 205 ± 5 ℃ for 24 h. After 12 weeks feeding, rats in HO and HFO groups showed a significantly increased in liver and kidney weight (p<0.0001), and a significantly decreased in body weight gain (p<0.0001), feeding efficiency (p<0.0001), abdominal fat weight including epididymal (EP) and retroperitoneal (RE) (p<0.0001), serum and liver lipids (p<0.0001). The TG (triglyceride) content of adipocytes isolated from EP and RE was also significantly lower than those of rats fed with fresh soybean oil (p<0.0001 for RE). The volume of adipocytes isolated from EP and RE was also significantly lower in OFO than those of rats fed with fresh soybean oil (p=0.05 for EP and RE).
Though the activities of enzymes participated in lipogenesis of adipose tissue including glycerol-3-phosphate dehydrogenase (p<0.01 for RE) and lipoprotein lipase (p<0.05 for EP and p=0.05 for RE) were significantly increased in rats fed with OFO, the basal lipolysis rate (p<0.05 for EP and RE) in adipose tissue of HO and HFO group was significantly higher than HF group. The enhanced lipolysis rate in adipose tissue of rats fed with fish oil and OFO partly explained the anti-adiposity effect observed in those rats.
The gene expression of adipocyte differentiation markers and adipocytokines was analyzed by Northern blot. Compared with HF group, PPARg (p<0.05 for RE), LPL (p=0.05 for RE), leptin (p<0.005 for EP and p<0.0001 for RE) and adiponectin (p<0.0005 for RE) mRNA in adipose tissue was significantly reduced in HFO group. On the other hand, PPARg mRNA was significantly increased (p=0.05 for EP) but leptin mRNA was significantly decreased (p<0.0001 for RE) in adipose of HO group. Thus, the adipocyte differentiation seems to be slightly inhibited by fish oil, but not by OFO, though the adiposity was significantly reduced in OFO-fed rats.
The fasting blood glucose and serum insulin were followed for 9 wk in LF, HF and HO groups of rats. There was no significant difference among three groups, but the insulin and blood glucose tended to be higher in HO group of rats at the 9th wk. Rats fed with OFO also showed a significantly higher area under curve (AUC) in oral glucose tolerance test (OGTT) performed at the 3th and 9th wk (p<0.001 and p<0.01 for the 3th and 9th wk respectively).
In conclusion, these results showed OFO inhibit the hypertrophy of adipocytes induced by high-fat diet, but didn’t restrain the differentiation of adipocytes. The anti-adiposity effect in rats fed with fish oil and OFO-rich diet could be attributed to PPARa activation in liver and increased lipolysis rate in adipose tissue. Compared with fresh soybean oil, OFO may result in insulin resistance.
目錄
摘要…………………………………………………………………………..I
Abstract …………………………………………………………………...III
第一章 前言………………………………………………………………...1
第二章 文獻回顧…………………………………………………………...2
一、 過氧化體與PPAR……………………………………………….2
(一) 過氧化體…………………………………………………2
(二) 過氧化體中之b-oxidation……………………………….2
(三) 過氧化體增殖劑…………………………………………3
(四) PPAR……………………………………………………..3
(五) PPAR標的基因與PPRE………………………………..5
(六) PPAR的活化劑(activators)與結合子(ligands)………..6
二、 脂肪細胞分化…………………………………………………….7
(一) 調控脂肪細胞分化之重要因子- PPARg..........................9
(二) 脂肪細胞分化與胰島素阻抗性………………………..11
三、 脂肪細胞分泌之脂肪細胞激素對胰島素阻抗性之影響……..12
(一) TNF- a..............................................................................12
(二) Leptin……………………………………………………14
(三) Adiponectin……………………………………………..15
(四) Resistin………………………………………………….16
四、 魚油影響脂肪細胞分化及胰島素敏感性……………………..18
五、 共軛亞麻油酸對脂質堆積及胰島素敏感性之影響…………..20
六、 炸油對於PPAR活性及脂質代謝之影響……………………21
第三章 材料與方法……………………………………………………….24
實驗設計……………………………………………….…………….24
一、氧化炸油的製備…………………………………………………25
二、油脂品質分析……………………………………………………25
(一) 酸價 (Acid Value, AV).………………………….…….25
(二) 共軛雙烯測定………………………………………26三、試驗飼料之配製…………………………………………………26
四、動物飼養…………………...…………………………………….28
五、動物犧牲與樣品收集…………...……………………………….29
六、G3PDH (glycerol-3-phosphate dehydrogenase)
酵素活性測定…………………………………………………..29
七、脂解速率測定…………………………………………………...33
八、LPL (lipoprotein lipase)酵素活性測定………………………..34
九、以北方墨點法(Northern blot)分析PPARg、LPL、ADD1/SREBP、adipisin、resistin、leptin及adiponectin
mRNA表現量………………………………………………..38
(一) 總RNA之抽取…………………………………………38
(二) RNA電泳………………………………………………..39
(三) RNA轉印法……………………………………………..42
(四) 探針標幟………………………………………………..42
(五) 雜交反應………………………………………………..43
十、血清脂質及甘油分析…………………………………………..44
(一) 血清總脂質含量測定…………………………………..44
(二) 血清三酸甘油酯含量測定……………………………..44
(三) 血清膽固醇含量測定…………………………………..45
(四) 血清游離脂肪酸含量測定……………………………..46
(五) 血清甘油含量測定……………………………………..47
十一、 肝臟脂質分析………………………………………………48
(一) 肝脂質萃取液製備……………………………………..48
(二) 肝臟總脂質含量測定…………………………………..49
(三) 肝臟三酸甘油酯含量測定……………………………..49
(四) 肝臟膽固醇含量測定…………………………………..49
(五) 肝臟游離脂肪酸含量測定……………………………..49
十二、脂肪組織三酸甘油酯含量測定………………………………49
(一) 脂肪組織脂質萃取液製備…….……………………….50
(二) 脂肪組織三酸甘油酯含量測定………………………..50
十三、脂肪組織DNA測定………………………………………....50
十四、脂肪組織包埋切片…………………………………………...52
十五、口服葡萄糖耐受測試…………………………………………54
十六、全血葡萄糖含量測定…………………………………………55
十七、禁食血清胰島素測定法………………………………………55
十八、統計分析………………………………………………………56
第四章 結果……………………………………………………………….57
第五章 討論……………………………………………………………..101
第六章 結論……………………………………………………………..116
第七章 參考文獻……………………….……………………………….118
附錄………………………………………………………………………132
第七章 參考文獻

趙蓓敏。氧化炸油活化PPARa之探討。臺灣大學農化所博士論文,2002。

吳雅玲。膳食油脂對大鼠脂肪組織中PPARγ與相關基因mRNA表現及化學組成影響之探討,臺灣大學農化所碩士論文,1999。

劉珍芳。炸油餵食對老鼠體內維生素 E 代謝之影響。臺灣大學農化所博士論文,1993。

湯雅理。炸油餵食對老鼠肝中維生素A含量及肝微粒體cytochrome P-450 酵素活性之影響。臺灣大學農化所碩士論文,1994。

戚祖沅。新鮮黃豆油與炸油攝取對NZB/W F1自體免疫鼠病情之影響探討。臺灣大學農化所碩士論文,1996。
Ahima, R.S., and Flier, J.S. (2000). Leptin. Annu. Rev. Physiol. 62, 413-437.
Ailhaud, G., Grimaldi, P., and Negrel, R. (1992). Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12, 207-233.
Amri, E.Z., Ailhaud, G., and Grimaldi, P.A. (1994). Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells. J. Lipid Res. 35, 930-937.
Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., Shimomura, I., Nakamura, T., and Miyaoka, K. et al. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79-83.
Asada, N., Takahashi, Y., and Honjo, M. (2000). Effects of 22K or 20K human growth hormone on lipolysis, leptin production in adipocytes in the presence and absence of human growth hormone binding protein. Horm. Res. 54, 203-207.
Barak, Y., Nelson, M.C., Ong, E.S., Jones, Y.Z., Ruiz-Lozano, P., Chien, K.R., Koder, A., and Evans, R.M. (1999). PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585-595.
Belury, M.A., and Kempa-Steczko, A. (1997). Conjugated linoleic acid modulates hepatic lipid composition in mice. Lipids 32, 199-204.
Berg, A.H., Combs, T.P., Du, X., Brownlee, M., and Scherer, P.E. (2001). The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947-953.
Berger, J.J., and Barnard, R.J. (1999). Effect of diet on fat cell size and hormone-sensitive lipase activity. J. Appl. Physiol. 87, 227-232.
Beutler, B., Greenwald, D., Hulmes, J.D., Chang, M., Pan, Y.C., Mathison, J., Ulevitch, R., and Cerami, A. (1985). Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552-554.
Brennan, B.M., Rahim, A., Blum, W.F., Adams, J.A., Eden, O.B., and Shalet, S.M. (1999). Hyperleptinaemia in young adults following cranial irradiation in childhood: growth hormone deficiency or leptin insensitivity? Clin. Endocrinol. (Oxf) 50, 163-169.
Brodie, A.E., Manning, V.A., Ferguson, K.R., Jewell, D.E., and Hu, C.Y. (1999). Conjugated linoleic acid inhibits differentiation of pre- and post- confluent 3T3-L1 preadipocytes but inhibits cell proliferation only in preconfluent cells. J. Nutr. 129, 602-606.
Brun, R.P., Tontonoz, P., Forman, B.M., Ellis, R., Chen, J., Evans, R.M., and Spiegelman, B.M. (1996). Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev. 10, 974-984.
Chao, P.M., Chao, C.Y., Lin, F.J., and Huang, C. (2001). Oxidized frying oil up-regulates hepatic acyl-CoA oxidase and cytochrome P450 4 A1 genes in rats and activates PPARalpha. J. Nutr. 131, 3166-3174.
Chao, P.M., Yang, M.F., Tseng, Y.N., Chang, K.M., Lu, K.S., and Huang, C. (2005). Peroxisome proliferation in liver of rats fed oxidized frying oil. J. Nutr. Sci. Vita. Submit.
Chen, I.S., Hotta, S.S., Ikeda, I., Cassidy, M.M., Sheppard, A.J., and Vahouny, G.V. (1987). Digestion, absorption and effects on cholesterol absorption of menhaden oil, fish oil concentrate and corn oil by rats. J. Nutr. 117, 1676-1680.
Combs, T.P., Berg, A.H., Obici, S., Scherer, P.E., and Rossetti, L. (2001). Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875-1881.
Cook, M.E., Miller, C.C., Park, Y., and Pariza, M. (1993). Immune modulation by altered nutrient metabolism: nutritional control of immune-induced growth depression. Poult. Sci. 72, 1301-1305.
De Vos, P., Lefebvre, A.M., Miller, S.G., Guerre-Millo, M., Wong, K., Saladin, R., Hamann, L.G., Staels, B., Briggs, M.R., and Auwerx, J. (1996). Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J. Clin. Invest. 98, 1004-1009.
Del Prado, M., Hernandez-Montes, H., and Villalpando, S. (1994). Characterization of a fluorometric method for lipoprotein lipase. Arch. Med. Res. 25, 331-335.
Delerive, P., Furman, C., Teissier, E., Fruchart, J., Duriez, P., and Staels, B. (2000). Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner. FEBS Lett. 471, 34-38.
Devchand, P.R., Keller, H., Peters, J.M., Vazquez, M., Gonzalez, F.J., and Wahli, W. (1996). The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384, 39-43.
Dowell, P., Peterson, V.J., Zabriskie, T.M., and Leid, M. (1997). Ligand-induced peroxisome proliferator-activated receptor alpha conformational change. J. Biol. Chem. 272, 2013-2020.
Evans, M., Geigerman, C., Cook, J., Curtis, L., Kuebler, B., and McIntosh, M. (2000). Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids 35, 899-910.
Fajas, L., Fruchart, J.C., and Auwerx, J. (1998). Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10, 165-173.
Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M., and Paschke, R. (2001). Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett. 507, 142-146.
Fernandez-Galaz, C., Fernandez-Agullo, T., Perez, C., Peralta, S., Arribas, C., Andres, A., Carrascosa, J.M., and Ros, M. (2002). Long-term food restriction prevents ageing-associated central leptin resistance in wistar rats. Diabetologia 45, 997-1003.
Forman, B.M., Tontonoz, P., Chen, J., Brun, R.P., Spiegelman, B.M., and Evans, R.M. (1995). 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803-812.
Fruebis, J., Tsao, T.S., Javorschi, S., Ebbets-Reed, D., Erickson, M.R., Yen, F.T., Bihain, B.E., and Lodish, H.F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. U. S. A. 98, 2005-2010.
Gearing, A.J., Beckett, P., Christodoulou, M., Churchill, M., Clements, J., Davidson, A.H., Drummond, A.H., Galloway, W.A., Gilbert, R., and Gordon, J.L. (1994). Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 370, 555-557.
Gimble, J.M., Robinson, C.E., Wu, X., Kelly, K.A., Rodriguez, B.R., Kliewer, S.A., Lehmann, J.M., and Morris, D.C. (1996). Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol. Pharmacol. 50, 1087-1094.
Graves, R.A., Tontonoz, P., and Spiegelman, B.M. (1992). Analysis of a tissue-specific enhancer: ARF6 regulates adipogenic gene expression. Mol. Cell. Biol. 12, 3313.
Gregoire, F.M., Smas, C.M., and Sul, H.S. (1998). Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809.
Grimaldi, P.A. (2001). The roles of PPARs in adipocyte differentiation. Prog. Lipid Res. 40, 269-281.
Hamosh, M., Clary, T.R., Chernick, S.S., and Scow, R.O. (1970). Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim. Biophys. Acta 210, 473-482.
Hess, R., Staubli, W., and Riess, W. (1965). Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature 208, 856-858.
Hill, J.O., Lin, D., Yakubu, F., and Peters, J.C. (1992). Development of dietary obesity in rats: influence of amount and composition of dietary fat. Int. J. Obes. Relat. Metab. Disord. 16, 321-333.
Hill, J.O., Peters, J.C., Lin, D., Yakubu, F., Greene, H., and Swift, L. (1993). Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. Int. J. Obes. Relat. Metab. Disord. 17, 223-236.
Holst, D., and Grimaldi, P.A. (2002). New factors in the regulation of adipose differentiation and metabolism. Curr. Opin. Lipidol. 13, 241-245.
Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., and Spiegelman, B.M. (1996). IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665-668.
Hotamisligil, G.S., Shargill, N.S., and Spiegelman, B.M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91.
Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., and Maeda, K. et al. (2000). Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595-1599.
Hotta, K., Funahashi, T., Bodkin, N.L., Ortmeyer, H.K., Arita, Y., Hansen, B.C., and Matsuzawa, Y. (2001). Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50, 1126-1133.
Houseknecht, K.L., Vanden Heuvel, J.P., Moya-Camarena, S.Y., Portocarrero, C.P., Peck, L.W., Nickel, K.P., and Belury, M.A. (1998). Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem. Biophys. Res. Commun. 244, 678-682.
Ip, C., Scimeca, J.A., and Thompson, H.J. (1994). Conjugated linoleic acid. A powerful anticarcinogen from animal fat sources. Cancer 74, 1050-1054.
Issemann, I., and Green, S. (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650.
Juan, C.C., Fang, V.S., Huang, Y.J., Kwok, C.F., Hsu, Y.P., and Ho, L.T. (1996). Endothelin-1 induces insulin resistance in conscious rats. Biochem. Biophys. Res. Commun. 227, 694-699.
Kallen, C.B., and Lazar, M.A. (1996). Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. U. S. A. 93, 5793-5796.
Kappes, A., and Loffler, G. (2000). Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm. Metab. Res. 32, 548-554.
Kawakami, M., Pekala, P.H., Lane, M.D., and Cerami, A. (1982). Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin-induced mediator from exudate cells. Proc. Natl. Acad. Sci. U. S. A. 79, 912-916.
Kellerer, M., Lammers, R., Fritsche, A., Strack, V., Machicao, F., Borboni, P., Ullrich, A., and Haring, H.U. (2001). Insulin inhibits leptin receptor signalling in HEK293 cells at the level of janus kinase-2: a potential mechanism for hyperinsulinaemia-associated leptin resistance. Diabetologia 44, 1125-1132.
Kim, J.B., and Spiegelman, B.M. (1996). ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10, 1096-1107.
Kim, K.H., Lee, K., Moon, Y.S., and Sul, H.S. (2001). A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 276, 11252-11256.
Kim, K.H., Zhao, L., Moon, Y., Kang, C., and Sul, H.S. (2004). Dominant inhibitory adipocyte-specific secretory factor (ADSF)/resistin enhances adipogenesis and improves insulin sensitivity. Proc. Natl. Acad. Sci. U. S. A. 101, 6780-6785.
Kliewer, S.A., Lenhard, J.M., Willson, T.M., Patel, I., Morris, D.C., and Lehmann, J.M. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83, 813-819.
Kozak, L.P., and Jensen, J.T. (1974). Genetic and developmental control of multiple forms of L-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 249, 7775-7781.
Kriegler, M., Perez, C., DeFay, K., Albert, I., and Lu, S.D. (1988). A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45-53.
Lazarow, P.B., and De Duve, C. (1976). A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc. Natl. Acad. Sci. U. S. A. 73, 2043-2046.
Le Lay, S., Boucher, J., Rey, A., Castan-Laurell, I., Krief, S., Ferre, P., Valet, P., and Dugail, I. (2001). Decreased resistin expression in mice with different sensitivities to a high-fat diet. Biochem. Biophys. Res. Commun. 289, 564-567.
Lee, K.N., Kritchevsky, D., and Pariza, M.W. (1994). Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 108, 19-25.
Lehmann, J.M., Lenhard, J.M., Oliver, B.B., Ringold, G.M., and Kliewer, S.A. (1997). Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406-3410.
Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., and Kliewer, S.A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270, 12953-12956.
Loftus, T.M., and Lane, M.D. (1997). Modulating the transcriptional control of adipogenesis. Curr. Opin. Genet. Dev. 7, 603-608.
Luo, J., Rizkalla, S.W., Boillot, J., Alamowitch, C., Chaib, H., Bruzzo, F., Desplanque, N., Dalix, A.M., Durand, G., and Slama, G. (1996). Dietary (n-3) polyunsaturated fatty acids improve adipocyte insulin action and glucose metabolism in insulin-resistant rats: relation to membrane fatty acids. J. Nutr. 126, 1951-1958.
MacDougald, O.A., Cornelius, P., Lin, F.T., Chen, S.S., and Lane, M.D. (1994). Glucocorticoids reciprocally regulate expression of the CCAAT/enhancer-binding protein alpha and delta genes in 3T3-L1 adipocytes and white adipose tissue. J. Biol. Chem. 269, 19041-19047.
Mannaerts, G.P., and Van Veldhoven, P.P. (1992). Role of peroxisomes in mammalian metabolism. Cell Biochem. Funct. 10, 141-151.
Mantzoros, C.S., Qu, D., Frederich, R.C., Susulic, V.S., Lowell, B.B., Maratos-Flier, E., and Flier, J.S. (1996). Activation of beta(3) adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice. Diabetes 45, 909-914.
McTernan, P.G., Fisher, F.M., Valsamakis, G., Chetty, R., Harte, A., McTernan, C.L., Clark, P.M., Smith, S.A., Barnett, A.H., and Kumar, S. (2003). Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J. Clin. Endocrinol. Metab. 88, 6098-6106.
Mohler, K.M., Sleath, P.R., Fitzner, J.N., Cerretti, D.P., Alderson, M., Kerwar, S.S., Torrance, D.S., Otten-Evans, C., Greenstreet, T., and Weerawarna, K. (1994). Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 370, 218-220.
Morimoto, C., Kameda, K., Tsujita, T., and Okuda, H. (2001). Relationships between lipolysis induced by various lipolytic agents and hormone-sensitive lipase in rat fat cells. J. Lipid Res. 42, 120-127.
Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H., and Evans, R.M. (1998). Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93, 229-240.
Nichols, F., and Maraj, B. (1998). Relationship between hydroxy fatty acids and prostaglandin E2 in gingival tissue. Infect. Immun. 66, 5805-5811.
Nolen, G.A., Alexander, J.C., and Artman, N.R. (1967). Long-term rat feeding study with used frying fats. J. Nutr. 93, 337-348.
Okamoto, Y., Arita, Y., Nishida, M., Muraguchi, M., Ouchi, N., Takahashi, M., Igura, T., Inui, Y., Kihara, S., and Nakamura, T. et al. (2000). An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm. Metab. Res. 32, 47-50.
Okuno, M., Kajiwara, K., Imai, S., Kobayashi, T., Honma, N., Maki, T., Suruga, K., Goda, T., Takase, S., Muto, Y., and Moriwaki, H. (1997). Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J. Nutr. 127, 1752-1757.
Osmundsen, H., Bremer, J., and Pedersen, J.I. (1991). Metabolic aspects of peroxisomal beta-oxidation. Biochim. Biophys. Acta 1085, 141-158.
Ouchi, N., Kihara, S., Arita, Y., Nishida, M., Matsuyama, A., Okamoto, Y., Ishigami, M., Kuriyama, H., Kishida, K., and Nishizawa, H. et al. (2001). Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103, 1057-1063.
Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W. (1997). Effect of conjugated linoleic acid on body composition in mice. Lipids 32, 853-858.
Parrish, C.C., Pathy, D.A., and Angel, A. (1990). Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism 39, 217-219.
Pennica, D., Nedwin, G.E., Hayflick, J.S., Seeburg, P.H., Derynck, R., Palladino, M.A., Kohr, W.J., Aggarwal, B.B., and Goeddel, D.V. (1984). Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724-729.
Peyron-Caso, E., Fluteau-Nadler, S., Kabir, M., Guerre-Millo, M., Quignard-Boulange, A., Slama, G., and Rizkalla, S.W. (2002). Regulation of glucose transport and transporter 4 (GLUT-4) in muscle and adipocytes of sucrose-fed rats: effects of N-3 poly- and monounsaturated fatty acids. Horm. Metab. Res. 34, 360-366.
Peyron-Caso, E., Quignard-Boulange, A., Laromiguiere, M., Feing-Kwong-Chan, S., Veronese, A., Ardouin, B., Slama, G., and Rizkalla, S.W. (2003). Dietary fish oil increases lipid mobilization but does not decrease lipid storage-related enzyme activities in adipose tissue of insulin-resistant, sucrose-fed rats. J. Nutr. 133, 2239-2243.
Poling, C.E., Eagle, E., Rice, E.E., Durand, A.M., and Fisher, M. (1970). Long-term responses of rats to heat-treated dietary fats. IV. Weight gains, food and energy efficiencies, longevity and histopathology. Lipids 5, 128-136.
Popp-Snijders, C., Schouten, J.A., Heine, R.J., van der Meer, J., and van der Veen, E.A. (1987). Dietary supplementation of omega-3 polyunsaturated fatty acids improves insulin sensitivity in non-insulin-dependent diabetes. Diabetes Res. 4, 141-147.
Potashnik, R., Bloch-Damti, A., Bashan, N., and Rudich, A. (2003). IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 46, 639-648.
Qi, C., and Pekala, P.H. (2000). Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc. Soc. Exp. Biol. Med. 223, 128-135.
Rentsch, J., and Chiesi, M. (1996). Regulation of ob gene mRNA levels in cultured adipocytes. FEBS Lett. 379, 55-59.
Riserus, U., Arner, P., Brismar, K., and Vessby, B. (2002), a. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25, 1516-1521.
Riserus, U., Basu, S., Jovinge, S., Fredrikson, G.N., Arnlov, J., and Vessby, B. (2002), b. Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation 106, 1925-1929.
Rodriguez Fernandez, J.L., and Ben-Ze'ev, A. (1989). Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine. Differentiation 42, 65-74.
Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, B.M., and Mortensen, R.M. (1999). PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617.
Saha, S.K., Moriya, M., Ohinata, H., and Kuroshima, A. (1994). Lipid interference with fluorometric assay of DNA in adipose tissues under various conditions. Jpn. J. Physiol. 44, 421-431.
Savage, D.B., Sewter, C.P., Klenk, E.S., Segal, D.G., Vidal-Puig, A., Considine, R.V., and O'Rahilly, S. (2001). Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 50, 2199-2202.
Schoonjans, K., Staels, B., and Auwerx, J. (1996). Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37, 907-925.
Seedorf, U., Raabe, M., Ellinghaus, P., Kannenberg, F., Fobker, M., Engel, T., Denis, S., Wouters, F., Wirtz, K.W., Wanders, R.J., Maeda, N., and Assmann, G. (1998). Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev. 12, 1189-1201.
Shimomura, I., Hammer, R.E., Richardson, J.A., Ikemoto, S., Bashmakov, Y., Goldstein, J.L., and Brown, M.S. (1998). Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182-3194.
Shimomura, Y., Tamura, T., and Suzuki, M. (1990). Less body fat accumulation in rats fed a safflower oil diet than in rats fed a beef tallow diet. J. Nutr. 120, 1291-1296.
Slieker, L.J., Sloop, K.W., Surface, P.L., Kriauciunas, A., LaQuier, F., Manetta, J., Bue-Valleskey, J., and Stephens, T.W. (1996). Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP. J. Biol. Chem. 271, 5301-5304.
Spiegelman, B.M. (1998). PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47, 507-514.
Steppan, C.M., Bailey, S.T., Bhat, S., Brown, E.J., Banerjee, R.R., Wright, C.M., Patel, H.R., Ahima, R.S., and Lazar, M.A. (2001). The hormone resistin links obesity to diabetes. Nature 409, 307-312.
Storlien, L.H., Kraegen, E.W., Chisholm, D.J., Ford, G.L., Bruce, D.G., and Pascoe, W.S. (1987). Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237, 885-888.
Sulzle, A., Hirche, F., and Eder, K. (2004). Thermally oxidized dietary fat upregulates the expression of target genes of PPAR alpha in rat liver. J. Nutr. 134, 1375-1383.
Tolbert, N.E. (1981). Metabolic pathways in peroxisomes and glyoxysomes. Annu. Rev. Biochem. 50, 133-157.
Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156.
Tontonoz, P., Nagy, L., Alvarez, J.G., Thomazy, V.A., and Evans, R.M. (1998). PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241-252.
Tracey, K.J., and Cerami, A. (1993). Tumor necrosis factor, other cytokines and disease. Annu. Rev. Cell Biol. 9, 317-343.
Tsuboyama-Kasaoka, N., Takahashi, M., Tanemura, K., Kim, H.J., Tange, T., Okuyama, H., Kasai, M., Ikemoto, S., and Ezaki, O. (2000). Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49, 1534-1542.
Tsuboyama-Kasaoka, N., Tsunoda, N., Maruyama, K., Takahashi, M., Kim, H., Cooke, D.W., Lane, M.D., and Ezaki, O. (1999). Overexpression of GLUT4 in mice causes up-regulation of UCP3 mRNA in skeletal muscle. Biochem. Biophys. Res. Commun. 258, 187-193.
Vandenabeele, P., Declercq, W., Beyaert, R., and Fiers, W. (1995). Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 5, 392-399.
Vassalli, P. (1992). The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10, 411-452.
Vicennati, V., Vottero, A., Friedman, C., and Papanicolaou, D.A. (2002). Hormonal regulation of interleukin-6 production in human adipocytes. Int. J. Obes. Relat. Metab. Disord. 26, 905-911.
Vionnet, N., Hani, E., Dupont, S., Gallina, S., Francke, S., Dotte, S., De Matos, F., Durand, E., Lepretre, F., and Lecoeur, C. et al. (2000). Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet. 67, 1470-1480.
Way, J.M., Gorgun, C.Z., Tong, Q., Uysal, K.T., Brown, K.K., Harrington, W.W., Oliver, W.R.,Jr, Willson, T.M., Kliewer, S.A., and Hotamisligil, G.S. (2001). Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J. Biol. Chem. 276, 25651-25653.
West, D.B., Blohm, F.Y., Truett, A.A., and DeLany, J.P. (2000). Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J. Nutr. 130, 2471-2477.
West, D.B., Delany, J.P., Camet, P.M., Blohm, F., Truett, A.A., and Scimeca, J. (1998). Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am. J. Physiol. 275, R667-72.
Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R.E., and Tataranni, P.A. (2001). Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930-1935.
Willi, S.M., Kennedy, A., Wallace, P., Ganaway, E., Rogers, N.L., and Garvey, W.T. (2002). Troglitazone antagonizes metabolic effects of glucocorticoids in humans: effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids, and leptin. Diabetes 51, 2895-2902.
Xie, Y., Yang, Q., Nelson, B.D., and DePierre, J.W. (2002). Characterization of the adipose tissue atrophy induced by peroxisome proliferators in mice. Lipids 37, 139-146.
Xu, H., Hirosumi, J., Uysal, K.T., Guler, A.D., and Hotamisligil, G.S. (2002). Exclusive action of transmembrane TNF alpha in adipose tissue leads to reduced adipose mass and local but not systemic insulin resistance. Endocrinology 143, 1502-1511.
Yang, W.S., Lee, W.J., Funahashi, T., Tanaka, S., Matsuzawa, Y., Chao, C.L., Chen, C.L., Tai, T.Y., and Chuang, L.M. (2001). Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J. Clin. Endocrinol. Metab. 86, 3815-3819.
Yokota, T., Oritani, K., Takahashi, I., Ishikawa, J., Matsuyama, A., Ouchi, N., Kihara, S., Funahashi, T., Tenner, A.J., Tomiyama, Y., and Matsuzawa, Y. (2000). Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96, 1723-1732.
Zhang, J., Fu, M., Cui, T., Xiong, C., Xu, K., Zhong, W., Xiao, Y., Floyd, D., Liang, J., Li, E., Song, Q., and Chen, Y.E. (2004). Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc. Natl. Acad. Sci. U. S. A. 101, 10703-10708.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周志龍,(1997),全球經濟發展與國土規劃開發體制變遷:台灣與英國為例。「思與言」,35(3):139-89。
2. 呂育誠,(1998), 縣市行政區域調整之配套思考-區域功能之整合,「研考雙月刊」,22:6=208,頁87-92。
3. 呂育誠,(1998), 縣市行政區域調整之配套思考-區域功能之整合,「研考雙月刊」,22:6=208,頁87-92。
4. 呂育誠,(1998), 縣市行政區域調整之配套思考-區域功能之整合,「研考雙月刊」,22:6=208,頁87-92。
5. 江岷欽、孫本初、劉坤億,(2004),地方政府間建立策略性夥伴關係之研究:以台北市及其鄰近縣市為例,「臺北大學行政暨政策學報」,第 38 期,頁 1~30。
6. 江岷欽、孫本初、劉坤億,(2004),地方政府間建立策略性夥伴關係之研究:以台北市及其鄰近縣市為例,「臺北大學行政暨政策學報」,第 38 期,頁 1~30。
7. 江岷欽、孫本初、劉坤億,(2004),地方政府間建立策略性夥伴關係之研究:以台北市及其鄰近縣市為例,「臺北大學行政暨政策學報」,第 38 期,頁 1~30。
8. 江大樹,(2000), 台灣行政區劃調整的回顧與前瞻,「暨大學報」,4:2,頁51-70。
9. 江大樹,(2000), 台灣行政區劃調整的回顧與前瞻,「暨大學報」,4:2,頁51-70。
10. 江大樹,(2000), 台灣行政區劃調整的回顧與前瞻,「暨大學報」,4:2,頁51-70。
11. 朱澤民、林建仁、陳美吟、劉彩卿、陳欽賢,(2004),地方政府全民健保保費補助欠款問題之實證分析,「財稅研究」,36:6,頁42-59。
12. 朱澤民、林建仁、陳美吟、劉彩卿、陳欽賢,(2004),地方政府全民健保保費補助欠款問題之實證分析,「財稅研究」,36:6,頁42-59。
13. 石莎新,(2003),中正機場捷運案一頁荒唐史--你會算、我會算、大家都失算,「財訊」,251期,頁137-141。
14. 朱澤民、林建仁、陳美吟、劉彩卿、陳欽賢,(2004),地方政府全民健保保費補助欠款問題之實證分析,「財稅研究」,36:6,頁42-59。
15. 石莎新,(2003),中正機場捷運案一頁荒唐史--你會算、我會算、大家都失算,「財訊」,251期,頁137-141。