跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳孟樺
研究生(外文):Meng-Hua Wu
論文名稱:泥岩複合襯裡缺陷滲漏之預測模式
論文名稱(外文):A model for predicting leakage through a mudstone composite liner due to geomembrane defects
指導教授:林宗曾
指導教授(外文):Tzong-Tzeng Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:86
中文關鍵詞:複合襯裡FEMWATER模式預測模式
外文關鍵詞:composite linerFEMWATERearly warning model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
掩埋場複合襯裡中之人造地工止水膜,因其厚度甚薄(60mils),以致於在掩埋場襯裡之施工或使用過程中,常產生缺陷、破洞,使得掩埋場滲出水滲漏,污染地下水體,造成所謂之二次污染問題。目前國內外對掩埋場滲漏之監測,主要於上、下游設置水井,以監測地下水質,若掩埋場有滲漏之餘時,污染以蔓延至地下水體中,無法有效的提供預警作用。因此本研究旨在於建立一預測模式,進行掩埋場襯裡缺陷滲漏之模擬與預測,並預測襯裡層貫穿之時間,以提供一有效之預警作用。
瞭解掩埋場襯裡缺陷滲漏之實際狀況,模擬及預測其因缺陷產生之滲流軌跡,乃是本研究之重大課題。因此本研究將進行現地缺陷滲漏之模擬試驗,以實際之掩埋場襯裡作為缺陷模擬之對象,於缺陷處埋設儀器監測其滲漏之狀況。將監測資料搭配有限元素程式(FEMWATER模式),進一步建立及修正預測模式中之參數。
研究結果顯示利用FEMWATER模式做為主體之預測模式,預測缺陷直徑尺寸為3cm,其襯裡層厚度為30cm及60cm之襯裡層貫穿時間,分別為11.84年及21.45年,另缺陷直徑尺寸為6cm,其襯裡層厚度為30cm及60cm之襯裡層貫穿時間,分別為5.75年及11.01年。結果顯示於定水頭(30cm)狀況下,襯裡層之貫穿時間會隨著缺陷尺寸直徑增加而減少。
Abstract
The geomembrane is partially damaged in the landfill construction and operation due to its thin thickness (60 mils). This damage was called the defect. The leachate in landfill may leakage through the defect, then polluting the groundwater. At present, the up-gradient and down-gradient wells are installed to monitor whether the quality of background water does change at regular frequencies. However, the leak detection of the monitoring well could not provide an early warning. The purpose of the research is to set up a model for simulating and predicting the leakage through the defects in the composite liner. The model not only can predict the time of breakthrough for the leakage in a mudstone liner, but also can provide an early warning for landfill operation and management.
The scope of work is to monitor the in-situ leakage in a composite liner and to predict the leakage due to geomembrane defects. In this study, the test pad was used to simulate the leakage through the composite liner. The electrical sensors were installed at the same depths and positions in three different simulated defects. Then, the mathematical model (FEMWATER) was used to analyze the monitoring data for adjusting the parameters of the early warning model.
The result shows that an early warning model has well established and has well accepted on the leakage simulation. As the leakage passed through 3-cm defect in diameter, the time of breakthrough from 30-cm and 60-cm thick liner is approximately 11.84 years and 21.45 years, respectively. For 6-cm defect in diameter, the time of breakthrough from 30-cm and 60-cm thick liner is 5.75 years and 11.01 years, respectively. It can be concluded that the diameter of defect has a decisive influence on the time that the leakage passed through the mudstone liner under constant-head condition.
目 錄
中文摘要---------------------------------------------------------------------------------------------I
英文摘要--------------------------------------------------------------------------------------------II
誌謝-------------------------------------------------------------------------------------------------III
目錄-------------------------------------------------------------------------------------------------IV
表目錄----------------------------------------------------------------------------------------------VI
圖目錄---------------------------------------------------------------------------------------------VII
一、緒論--------------------------------------------------------------------------------------------- 1
1.1 研究動機-------------------------------------------------------------------------------- 1
1.2 研究目的 -------------------------------------------------------------------------------- 2
1.3 研究內容 -------------------------------------------------------------------------------- 2
二、文獻回顧與相關理論----------------------------------------------------------------------- 4
2.1 掩埋場之構造---------------------------------------------------------------------------4
2.2 掩埋場襯裡系統------------------------------------------------------------------------5
2.2.1天然襯裡層-------------------------------------------------------------------------5
2.2.2人造襯裡層-------------------------------------------------------------------------5
2.2.3複合襯裡層-------------------------------------------------------------------------6
2.2.4襯裡系統----------------------------------------------------------------------------8
2.3 地工止水膜缺陷滲漏之相關研究---------------------------------------------------9
2.3.1 缺陷定義與破損原因-------------------------------------------------------------9
2.3.2 滲漏之相關研究-----------------------------------------------------------------10
2.3.3 滲漏之監測方式-----------------------------------------------------------------12
2.3.4 濕潤半徑--------------------------------------------------------------------------12
2.4 土壤濕度量測之相關研究-----------------------------------------------------------13
2.4.1電阻法-------------------------------------------------------------------------------13
2.4.2電容法-------------------------------------------------------------------------------14
2.5 掩埋場滲漏之數值模擬方法-FEMWATER程式之簡介---------------------15
2.5.1 FEMWATER與其前處理程式GMS之簡介 --------------------------------15
2.5.2 FEMWATER模式之原理說明--------------------------------------------------17
2.5.3保持曲線----------------------------------------------------------------------------18
三、實驗材料與方法-----------------------------------------------------------------------------21
3.1 實驗材料--------------------------------------------------------------------------------21
3.1.1實驗土樣----------------------------------------------------------------------------21
3.1.2實驗液體----------------------------------------------------------------------------21
3.2 實驗方法--------------------------------------------------------------------------------21
3.2.1 實驗土壤之基本分析-----------------------------------------------------------21
3.2.2 感測計之測試與校正-----------------------------------------------------------22
3.2.3 缺陷滲漏之模擬-----------------------------------------------------------------23
3.2.4 現地試驗平台之設置-----------------------------------------------------------24
3.2.5 滲漏試驗之架設-----------------------------------------------------------------25
3.3.1 3維數值模型之建立-------------------------------------------------------------25
3.3.2 FEMWATER相關輸入參數之設定--------------------------------------------26
四、結果與討論-----------------------------------------------------------------------------------37
4.1現地模擬試驗監測資料之分析------------------------------------------------------37
4.1.1現地監測資料之分析------------------------------------------------------------37
4.1.2現地監測資料之驗證------------------------------------------------------------38
4.2預測模式之修正------------------------------------------------------------------------38
4.2.1基本參數之修正------------------------------------------------------------------38
4.2.2蒸發量之修正---------------------------------------------------------------------38
4.2.3模式模擬結果之驗證------------------------------------------------------------39
4.3襯裡層貫穿時間之預測分析---------------------------------------------------------40
4.4預測模式之靈敏度分析---------------------------------------------------------------41
4.4.1靈敏度分析方式------------------------------------------------------------------41
4.4.2 水頭高度--------------------------------------------------------------------------42
4.4.3 缺陷尺寸--------------------------------------------------------------------------42
4.4.4 透水係數--------------------------------------------------------------------------42
4.4.5 蒸發量-----------------------------------------------------------------------------43
4.4.6土壤參數α值---------------------------------------------------------------------43
4.4.6土壤參數n值---------------------------------------------------------------------44
4.4.7各項參數之綜合評估------------------------------------------------------------44
五、結論與建議-----------------------------------------------------------------------------------71
5.1結論--------------------------------------------------------------------------------------71
5.2建議--------------------------------------------------------------------------------------72
參考文獻-------------------------------------------------------------------------------------------73
表 目 錄
表2.1天然襯裡層土樣選用之建議值-------------------------------------------------------- 5
表3.1基本物性分析結果-----------------------------------------------------------------------27
表4.1監測資料驗證分析表--------------------------------------------------------------------45
表4.2模式之基本參數--------------------------------------------------------------------------46
表4.3蒸發量折減係數回歸分析結果--------------------------------------------------------46
表4.4模擬值與實際直之回歸分析表--------------------------------------------------------47
表4.5襯裡層貫穿時間之預測分析表--------------------------------------------------------48
表4.6水頭高度之靈敏度分析表--------------------------------------------------------------48
表4.7缺陷尺寸之靈敏度分析表--------------------------------------------------------------49
表4.8透水係數之靈敏度分析表--------------------------------------------------------------50
表4.9蒸發量之靈敏度分析表-----------------------------------------------------------------51
表4.10土壤參數α之靈敏度分析表----------------------------------------------------------53
表4.11土壤參數n之靈敏度分析表----------------------------------------------------------52
圖 目 錄
圖2.1掩埋場示意圖----------------------------------------------------------------------------- 4
圖2.2複合襯裡層與單一襯裡層滲透行為之比較----------------------------------------- 7
圖2.3地工止水膜與夯實黏土層間緊密接觸之正確設計方式示意圖----------------- 7
圖2.4襯裡系統之種類 ------------------------------------------------------------------------- 9
圖2.5地工止水膜產生缺陷時之滲漏機制--------------------------------------------------11
圖2.6二維空間滲流之各個假設機制--------------------------------------------------------11
圖2.7三維空間有介面流之機制圖-----------------------------------------------------------12
圖2.8二維空間之側向滲流之示意圖--------------------------------------------------------13
圖2.9濕潤半徑之關係圖-----------------------------------------------------------------------13
圖2.10基本電路圖-------------------------------------------------------------------------------14
圖2.11GMS模擬之流程------------------------------------------------------------------------16
圖2.12傳統之土壤保持曲線-------------------------------------------------------------------19
圖3.1泥岩材料粒徑分析曲線-----------------------------------------------------------------27
圖3.2標準夯實曲線-----------------------------------------------------------------------------27
圖3.3校正曲線-----------------------------------------------------------------------------------28圖3.4磚窯場之混練機--------------------------------------------------------------------------28
圖3.5混練機之進料-----------------------------------------------------------------------------28
圖3.6土量溼度值之配製-----------------------------------------------------------------------29
圖3.7現地溼度值試驗--------------------------------------------------------------------------29
圖3.8整地作業-----------------------------------------------------------------------------------29
圖3.9磚塊層之舖設-----------------------------------------------------------------------------30
圖3.10磚塊層之滾壓----------------------------------------------------------------------------30
圖3.11基礎層之舖設----------------------------------------------------------------------------30
圖3.12基礎層之滾壓----------------------------------------------------------------------------31
圖3.13襯裡層之舖設----------------------------------------------------------------------------31
圖3.14襯裡層之滾壓----------------------------------------------------------------------------31
圖3.15工地密度試驗之孔洞-------------------------------------------------------------------32
圖3.16工地密度試驗----------------------------------------------------------------------------32
圖3.17舖設完成之襯裡層----------------------------------------------------------------------32
圖3.18試驗位置之放樣-------------------------------------------------------------------------33
圖3.19感測計之埋設----------------------------------------------------------------------------33
圖3.20感測計之測試----------------------------------------------------------------------------33
圖3.21填補埋設之孔洞-------------------------------------------------------------------------34
圖3.22壓克力管柱之溝槽----------------------------------------------------------------------34
圖3.23壓克力管柱之固定----------------------------------------------------------------------34
圖3.24壓克力管柱之錨定----------------------------------------------------------------------35
圖3.25超音波感測計之設置-------------------------------------------------------------------35
圖3.26滲漏模擬試驗之進行-------------------------------------------------------------------35
圖3.27自動監測系統之設備-------------------------------------------------------------------36
圖3.28數值模型之網格系統-------------------------------------------------------------------36
圖4.1感測計埋設位置圖-----------------------------------------------------------------------54
圖4.2深度5cm監測點電流與時間之關係------------------------------------------------55
圖4.3深度7.5cm監測點電流與時間之關係----------------------------------------------55
圖4.4深度10cm監測點電流與時間之關係-----------------------------------------------55
圖4.5深度15cm監測點電流與時間之關係-----------------------------------------------56
圖4.6深度25cm監測點電流與時間之關係-----------------------------------------------56
圖4.7深度5cm監測點溼度值與時間之關係---------------------------------------------56
圖4.8深度7.5cm監測點溼度值與時間之關係-----------------------------------------57
圖4.9深度10cm監測點溼度值與時間之關係------------------------------------------57
圖4.10深度15cm監測點溼度值與時間之關係------------------------------------------57
圖4.11深度25cm監測點溼度值與時間之關係------------------------------------------58
圖4.12蒸發量與時間之關係-------------------------------------------------------------------58
圖4.13溫度與時間之關係----------------------------------------------------------------------58
圖4.14深度25cm監測值與模擬值與時間之關係---------------------------------------59
圖4.15深度25cm殘差值與時間之關係---------------------------------------------------59
圖4.16監測點10D11N觀測值與模擬值之比較--------------------------------------------59
圖4.17監測點10D11E觀測值與模擬值之比較--------------------------------------------60
圖4.18監測點10D11S觀測值與模擬值之比較--------------------------------------------60
圖4.19監測點10D11W觀測值與模擬值之比較-------------------------------------------60
圖4.20監測點10D11N、10D11S平均觀測值與模擬值之比較---------------------------61
圖4.21監測點10D11E、10D11W平均觀測值與模擬值之比較--------------------------61
圖4.22監測點5D19N觀測值及模擬值與時間之關係------------------------------------61
圖4.23監測點5D13NE觀測值及模擬值與時間之關係----------------------------------62
圖4.24監測點5D19E觀測值及模擬值與時間之關係-------------------------------------62
圖4.25監測點5D13SE觀測值及模擬值與時間之關係-----------------------------------62
圖4.26監測點5D19S觀測值及模擬值與時間之關係-------------------------------------63
圖4.27監測點5D13SW觀測值及模擬值與時間之關係----------------------------------63
圖4.28監測點5D19W觀測值及模擬值與時間之關係------------------------------------63
圖4.29監測點5D13NW觀測值及模擬值與時間之關係---------------------------------64
圖4.30監測點7.5D5NE觀測值及模擬值與時間之關係----------------------------------64
圖4.31監測點7.5D5SE觀測值及模擬值與時間之關係----------------------------------64
圖4.32監測點7.5D5SW觀測值及模擬值與時間之關係---------------------------------65
圖4.33監測點7.5D5NW觀測值及模擬值與時間之關係---------------------------------65
圖4.34監測點10D11N觀測值及模擬值與時間之關係-----------------------------------65
圖4.35監測點10D17NE觀測值及模擬值與時間之關係---------------------------------66
圖4.36監測點10D11E觀測值及模擬值與時間之關係-----------------------------------66
圖4.37監測點10D17SE觀測值及模擬值與時間之關係---------------------------------66
圖4.38監測點10D11S觀測值及模擬值與時間之關係-----------------------------------67
圖4.39監測點10D11SW觀測值及模擬值與時間之關係---------------------------------67
圖4.40監測點10D11W觀測值及模擬值與時間之關係----------------------------------67
圖4.41監測點10D17NW觀測值及模擬值與時間之關係--------------------------------68
圖4.42監測點15D5N觀測值及模擬值與時間之關係------------------------------------68
圖4.43監測點15D5E觀測值及模擬值與時間之關係-------------------------------------68
圖4.44監測點15D5S觀測值及模擬值與時間之關係-------------------------------------69
圖4.45監測點15D5W觀測值及模擬值與時間之關係------------------------------------69
圖4.46監測點25D0觀測值及模擬值與時間之關係--------------------------------------69
圖4.47缺陷直徑3cm貫穿厚度30cm襯裡層之剖面----------------------------------70
圖4.48缺陷直徑3cm貫穿厚度60cm襯裡層之剖面----------------------------------70
圖4.49缺陷直徑6cm貫穿厚度30cm襯裡層之剖面----------------------------------70
圖4.50缺陷直徑6cm貫穿厚度60cm襯裡層之剖面----------------------------------70
參考文獻
1. 行政院環境保護署,2001,事業廢棄物貯存清除處理方法及設施標準
2. 張敬鴻,2001,複合阻水層之滲流率,國立交通大學土木工程研究所,碩士論文
3. 許琦、林宗曾、吳秉輯、林昌琰,2002,掩埋場泥岩襯裡滲漏監測新技術研究,2002年岩盤工程研討會論文集
4. 陳宏達、林宗曾、許琦、張祖恩,2000,泥岩襯裡材料持水曲線及非飽和函數參數驗證,第十五屆廢棄物處理技術研討會論文集,pp.8-1~8-8
5. 陳榮河,1998,地工合成材於掩埋場之應用,地工技術,No.71,pp.57-64
6. 單信瑜,1998,掩埋場阻水層材料與效能評估方法,地工技術,No.71,pp.65-82
7. 單信瑜,1999,地工合成材料於山坡地掩埋場之應用,地工技術,No.73,pp.57-66
8. 葉義章,2001,飽和及未飽和層地下流動對其溶質傳輸影響之研究─以核研所試驗場址為例,國立成功大學資源工程學系,博士論文
9. 劉家男、賴俊仁,2001,廢棄物掩埋場襯墊層之設計與施工,土木技術,Vol.4,No.4,pp.79-94
10. 劉建榮,2002,Van Genuchten 土壤特性曲線參數對濕鋒模擬與暫態補助量之影響,私立逢甲大學土木及水利工程研究所,碩士論文
11. 韓英信,2000,地工止水膜產生破洞時的輸水率模式探討,國立交通大學土木工程研究所,碩士論文
12. 簡連貴、李建中、李豐博,1990,導電度與砂土異向性行為之研究,港灣技術,Vol.5,pp.71-93
13. 闕蓓德,1991,重金屬離子於地下水層之傳輸研究,國立台灣大學環境工程學研究所,碩士論文
14. 蘇苗彬,1991,場置性地下水污染監測方法,地工技術,No.35,pp.60-68
15. Akgun H., Wallace R.B., 1996, Leakage detection in lined systems, Journal of Solid Waste Technology and Management, Vol.23, No.2, May, pp.67-71
16. Buss S.E., Butler A.P., Johnston P.M., Sollars C.J., Perry R., 1995, Mechanisms of leakage through synthetic landfill liner materials, Journal of the Chartered Institution of Water and Environment Management, Vol.9, No.4, Aug, pp.353-359
17. Code of Federal Regulations, 40 CFR, ”Protection of Environment,” 258
18. Darilek Glenn T., Parra Jorge O., 1989, Electrical leak location method for geomembrane liners, Journal of Hazardous Materials, Vol.21, No.2, Mar, pp.177-187
19. Foose G.J, Benson C.H., Edil T.B., Predicting leakage through composite landfill liners, Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.6, June, 2001, pp.510-520
20. Foose Gary J., 2002, Transit-time design for diffusion through composite liners, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.7, July, pp590-601
21. Giroud J.P. & R.Bonaparte, 1989, Leakage through liners constructed with geomembrane -Part I goemembrane liners, Geotextiles and Geomembrane, Vol.8, pp.27-67
22. Giroud J.P. & R.Bonaparte, 1989, Leakage through liners constructed with geomembrane -Part II composite liners, Geotextiles and Geomembrane, Vol.8, pp.71-111
23. Giroud J.P., Badu-Tweneboah K., Bonaparte R., 1992, Rate of leakage through a composite liner due to geomembrane defects, Geotextiles and Geomembranes, Vol.11, No.1, pp.1-28
24. Giroud J.P., Gross B.A., Bonaparte R., McKelvey J.A., 1997, Leachate flow in leakage collection layers due to defects in geomembrane liners, Geosynthetics International, Vol.4, No.3-4, pp.215-292
25. Giroud J.P., Khatami A., Badu-Tweneboah K., 1989, Evaluation of the rate of leakage through composite liners, Geotextiles and Geomembrane, Vol.8, pp.337-340
26. Laine Daren L., Darilek Glenn T., 1993, Detecting leaks in geomembranes, Civil Engineering (New York), Vol.63, No.8, Aug, pp.50-53
27. Laine, Daren L., (Leak Location Services Inc, San Antonio, USA), Darilek, Glenn T., 1993, Detecting leaks in geomembranes, Civil Engineering (New York), Vol.63, No.8, Aug, pp.50-53
28. Leakage detection in lined systems, Akgun H., (Middle East Technical Univ, Ankara, Turk), Wallace, R.B., Source: Journal of Solid Waste Technology and Management, v23, n2, May, 1996, pp.67-71
29. Parra J.O., Owen T.E., 1988, Model studies of electrical leak detection surveys in geomembrane-lined impoundments, Geophysics, Vol.53, No.11, Nov, pp.1453-1458
30. Walton John C., Sagar Budhi, 1990, Aspects of fluid flow through small flaws in membrane liners, Environmental Science and Technology, Vol. 24, No. 6, Jun, pp.920-924
31. Walton John, Rahman Masudur, Casey David, Picornell Miguel, Johnson Floyd, 1997, Leakage through flaws in geomembrane liners, Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.6, Jun, pp.534-539
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top