跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾獻德
研究生(外文):Shian-de Tzeng
論文名稱:具模糊邏輯最大功率追蹤控制之風力發電供電系統研製
論文名稱(外文):Development of a Wind Power System with Fuzzy-Logic Maximum Power Point Tracking
指導教授:李贊鑫
指導教授(外文):Tzann-shin Lee
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:174
中文關鍵詞:風力發電模糊邏輯最大功率追蹤控制自調量化因子
外文關鍵詞:Wind power generationFuzzy logicMaximum power point tracking controlSelf-tuned scaling factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:544
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:3
本論文針對風力發電系統最大功率追蹤控制之議題,提出具自調量化因子之模糊最大功率追蹤控制法則,可有效改善擾動觀察法之缺失。使用擾動觀察法進行最大功率追蹤控制時,追蹤速率愈快,操作點擾動量就愈大,故必須在追蹤速率與操作點穩定性之間取捨。因此,我們提出具自調量化因子之模糊最大功率追蹤控制,可同時兼顧最大功率之追蹤速率及操作點之穩定性;此外,當風速步級變化時,使用所提之最大功率追蹤控制的響應亦較優越,可使風力發電系統之應用更加完善。
此外,所提之最大功率追蹤控制法僅需量測風力發電機之輸出電壓與電流,無需感測風速和風力發電機之轉速及轉矩,可降低系統建構之成本,提升風力發電系統之實用性。本論文將藉由MATLAB/SIMULINK軟體模擬,初步驗證所提控制策略的可行性。在硬體實作上,則建構一具人工風場之風力發電系統市電並聯系統,使用eZdsp F28335發展板作為控制核心,實現自調量化因子與固定量化因子模糊最大功率追蹤及擾動觀察法等三種追蹤控制器並比較實作結果,以驗證所提自調量化因子模糊最大功率追蹤控制器之可行性及優越性。
In this paper, we study the issue of maximum power tracking control in a wind power generation system. A fuzzy maximum power point tracking (Fuzzy MPPT) control with self-tuned scaling factor is proposed to improve the tracking response of the perturbation and observation (P&O) method. As applying P&O method in maximum power point tracking, a fast tracking would result in large oscillation around the operating point. Hence one has to make a compromise between the tracking speed and the stability of operating point. The proposed method provides a means to resolve this dilemma. In addition, in response to step change in the velocity of the wind, the proposed scheme also outperforms the P&O method. This feature makes the proposed wind power generation system being more applicable.
In addition, only output voltage and current, without sensing the wind velocity, rotation speed and torque of the wind turbine, are required in implementing the proposed Fuzzy MPPT, which could reduce the cost and increase applicability in practice. The performance of the proposed Fuzzy MPPT is first verified by computer simulation with MATLAB/SIMULINK software. For experimental verification, a wind power generating system with utility parallel interface is built, in which an eZdsp F28335 development kit is employed to realize the three MPPT controllers: self-tuned and fixed scaling factor Fuzzy MPPT, and P&O method. The experimental results of these MPPT controllers are documented, and comparisons are made to illustrate the feasibility and superiority of our approach.
誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 XVIII
第一章 緒論 1
1.1 緣由 1
1.2 研究目的與方法 3
1.3 論文架構 5
第二章 風力發電系統概述 7
2.1 風力渦輪機的種類與特色 7
2.1.1 水平軸風力渦輪機 7
2.1.2 垂直軸風力渦輪機 8
2.2 風力發電原理 10
2.3 最大功率追蹤原理 14
2.3.1 基於風力發電機特性參數之追蹤方法 16
2.3.2 無需風力發電機特性參數之控制方法 21
2.4 風力發電的應用 29
2.5 本論文實驗架構 31
第三章 模糊邏輯最大功率追蹤控制 33
3.1 模糊理論 33
3.1.1 模糊理論的起源 33
3.1.2 模糊集合與歸屬函數 34
3.1.3 模糊邏輯與控制 37
3.2 模糊邏輯最大功率追蹤控制器設計 42
3.3 量化因子(Scaling factor)之自調策略 49
第四章 系統模型與模擬結果 53
4.1 系統模型分析與控制 53
4.1.1 升壓轉換器模型分析控制 53
4.1.2 變流器模型分析控制 58
4.2 模擬結果 61
4.2.1 風力發電系統市電並聯界面模擬 62
4.2.2 最大功率追蹤控制模擬 64
第五章 硬體實作與實驗結果 98
5.1 硬體實作介紹 98
5.1.1 數位訊號處理器發展板 99
5.1.2 控制流程 102
5.1.3 感測回授電路 107
5.1.4 開關驅動電路 108
5.1.5 風力發電機與人工風場 109
5.2 實驗結果 110
5.2.1 風力發電系統市電並聯界面實作 110
5.2.2 最大功率追蹤控制實作 112
第六章 結論與未來展望 146
6.1 結論 146
6.2 未來展望 147
附錄:硬體實作照片 148
參考文獻 151
[1] S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, Vol 89, pp. 1216-1226, 2001.
[2] H. Graβl, J. Kokott, M. Kulessa, J. Luther, F. Nusheler, R. Sauerborn, H.-J. Schellnhuber, R. Schubert and E.-D. Schulze, “World in transition – towards sustainable energy systems,” Earthscan, 2004.
[3] World wind energy report 2008 published, World Wind Energy Association, 2009.
[4] 牛山泉、三野正洋,小型風車設計及製造,復漢出版社,1994年7月。
[5] 陳銘杰、江炫樟、謝欣然、王榕朗,以小型風力發電機供應之電池充電系統研製,中華民國第二十七屆電力工程研討會論文,2006年。
[6] 劉文斌,以數位信號處理器為基礎之風力驅動永磁式同步發電機最大功率追蹤控制策略研究,聖約翰技術學院自動化及機電整合研究所碩士論文,2004年。
[7] 劉萬琨、張志英、李銀風、趙萍,風能與風力發電技術,化學工業出版社,2007年。
[8] B. Neammanee, S. Sirisumranukul and S. Chatratana, “Control performance analysis of feedforward and maximum peak power tracking for small-and medium-sized fixed pitch wind turbines,” ICARCV '06. 9th International Conference on Control, Automation, Robotics and Vision, pp. 1-7, 2006.
[9] T. Senjyu, Y. Ochi, E. Muhando, N. Urasaki and H. Sekine, “Speed and position sensor-less maximum power point tracking control for wind generation system with squirrel cage induction generator,” PSCE '06. Power Systems Conference and Exposition, pp. 2038-2043, 2006.
[10] A. Mirecki, X.Roboam and F. Richardeau, “Comparative study of maximum power strategy in wind turbines,” IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 993-998, 2004.
[11] G. D. Moor and H. J. Beukes, “Maximum power point trackers for wind turbines,” IEEE 35th Annual Power Electronics Specialists Conference, Vol. 3, pp. 2044-2049, 2004.
[12] H. Li, K. L. Shi and P. McLaren, “Neural network based sensorless maximum wind energy capture with compensated power coefficient,” Proceedings of the 39th Annual IEEE Industry Applications Conference, Vol. 4, pp. 2600-2608, 2004.
[13] 楊宏澤、彭百君、黃意明、蔡東育、周俊男,風力發電系統最大功率追蹤方法之研究,中華民國第二十七屆電力工程研討會論文,2006年。
[14] R. Datta, V. T. Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system,” IEEE Transaction on Energy Conversion, Vol. 18, pp. 163-168, 2003.
[15] Q. Wang and L. Chang, “An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems,” IEEE Transactions on Power Electronics, Vol. 19, pp. 1242-1249, 2004.
[16] J. S. Thongam, P. Bouchard, H. Ezzaidi and M. Ouhrouche, “Wind speed sensorless maximum power point tracking control of variable speed wind energy conversion systems,” IEEE International Electric Machines and Drives Conference, pp. 1832-1837, 2009.
[17] W. Xiao and W. G. Dunford, “A modified adaptive hill climbing MPPT method for photovoltaic power systems,” IEEE 35th Annual Power Electronics Specialists Conference, Vol. 3, 1957-1963, 2004.
[18] K. S. M. Raza, H. Goto, H.-J. Guo and O. Ichinokura, “A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion systems,” Proceedings of the 2008 International Conference on Electrical Machines, pp. 1-6, 2008.
[19] K. S. M. Raza, H. Goto, H.J. Guo and O. Ichinokura, “A novel speed-sensorless adaptive hill climbing algorithm for fast and efficient maximum power point tracking of wind energy conversion systems,” IEEE International Conference on Sustainable Energy Technologies, pp. 628-633, 2008.
[20] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transaction on Energy Conversion, Vol. 22, pp. 439-449, 2007.
[21] F. Liu, S. Duan, F. Liu, B. Liu and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Transactions on Industrial Electronics, Vol. 55, pp. 2622-2628, 2008.
[22] 陳家宏,太陽能電池最大功率點追蹤之設計與製作,淡江大學電機工程學系控制系統組碩士論文,2001年。
[23] I. H. Altas and A. M. Sharaf, “A novel maximum power fuzzy logic controller for photovoltaic solar energy systems,” Renewable Energy, Vol. 33, pp. 388-399, 2008.
[24] G. A. K. Ahmed, D. C. Lee and J. K. Seok, “Variable speed wind power generation system based on fuzzy logic control for maximum output power tracking,” IEEE 35th Annual Power Electronics Specialists Conference, Vol. 3, pp. 2039-0243, 2004.
[25] M. G. Simoes, B. K. Bose and R. J. Spiegel, “Fuzzy logic based intelligent control of a variable speed cage machine wind generation system,” IEEE Transactions on Power Electronics, Vol. 12, pp. 87-95, 1997.
[26] A. Z. Mohamed, M. N. Eskander and F. A. Ghali, “Fuzzy logic control based maximum power tracking of a wind energy system,” Renewable Energy, Vol. 23, pp. 235-245, 2001.
[27] X. Zhang, W. Wang and Y. Liu, “Fuzzy Control of Variable Speed Wind Turbine,” IEEE The Sixth World Congress on Intelligent Control and Automation, Vol. 1, pp. 3872-3876, 2006.
[28] 謝欣然、黃譯賢、柯昱光,應用模糊控制於太陽能系統之最大功率點與太陽軌跡追控,第七屆台灣電力電子研討會暨展覽會論文,2008年。
[29] 李明杰,小型市電並聯光伏變流器之研製,國立聯合大學電機工程學系碩士班碩士論文,2007年。
[30] 孫宗瀛、楊英魁,Fuzzy控制理論、實作與應用,全華科技圖書股份有限公司,2005年9月。
[31] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, Prentice Hall, 1998.
[32] F. Parasiliti, M. Tursini and D.Q. Zhang, “An analytical approach to the derivation of fuzzy PI scaling factors,” IEEE International Conference on Power Electronics and Drive Systems, Vol. 1, pp. 280-285, 1997.
[33] R. W. Erickson, “Fundamentals of Power Electronics,” Kluwer Academic Publishers, 1997.
[34] 江炫樟,電力轉換器分析與設計講義,國立聯合大學電機工程學系,2007年。
[35] eZdspTM F28335 Technical Reference, Spectrum Digital Inc., 2007.
[36] TMS320F28335 Digital Signal Controller Data Manual, Texas Instruments Inc., 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top