|
[1] C. E. Shannon, “A Mathematical Theory of Communication”, Bell Syst. Tech. J., 27: 379 - 423, July 1948. [2] H.-A. Loeliger, “An introduction to factor graphs”, IEEE Signal Processing Magazine, vol. 21, issue 1, pp. 28-41, Jan. 2004. [3] R. Crandall, “Some Notes on Steganography”, steganography Mailing List., 1998. [4] K. G. Paterson and Alan E. Jones, “Efficient decoding algorithms for generalized Reed-Muller Codes”, IEEE Trans. Commun., vol. 48, no. 8, pp. 1272 - 1285, Aug. 2000. [5] J. Fridrich, P. Lisonek, and D. Souka, “On steganographic embedding effciency”, in Proc. 8th Inf. Hiding Workshop, ser. Lecture Notes in Computer Science. Alexandria, VA: Spring, Jul. 10 - 12, 2006. [6] F. R. Kschischang, B. J. Frey and H.-A. Loeliger, “Factor graph and the sum-product algorithm”, IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001. [7] R. E. Krichevskiy, “On the number of Reed-Muller code correctable errors”, Dokl. Sov. Acad. Sci., vol. 191, pp. 541 - 547, 1970. [8] S. N. Litsyn,“On decoding complexity of low-rate Reed-Muller codes”, in Proc. 9th All-Union Conf. Coding Theory and Information Transmission, Odessa, Ukraine, U.S.S.R., 1988, pp. 202 - 204. In Russian. [9] C. Wang, W. Zhang, J. Liu, and N. Yu,“Fast Matrix Embedding by Matrix Extending”, IEEE Trans. Inf. Theory, vo7. 1, no. 1, pp. 346 - 350, Feb. 2012. [10] I. S. Reed, “A class of multiple error correcting codes and the decoding scheme”, IEEE Trans. Inf. Theory, vol. IT-4, no. 4, pp. 38 - 49, Sep. 1954. [11] F. R. Kschischang, “Codes defined on graphs”, IEEE Communications Magazine, vol. 41, issue 8, pp. 118-125, Aug. 2003.
|