跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.180) 您好!臺灣時間:2025/11/30 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹坤衛
研究生(外文):Kun-Wei Chan
論文名稱:胃幽門螺旋桿菌單股DNA結合蛋白結構之研究
論文名稱(外文):Structural Studies of Single-Stranded DNA Binding Protein from Helicobacter pylori
指導教授:孫玉珠
指導教授(外文):Yuh-Ju Sun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:57
中文關鍵詞:胃幽門螺旋桿菌單股DNA結合蛋白
外文關鍵詞:Helicobacter pyloriSingle-Stranded DNA Binding Protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

單股DNA結合蛋白於DNA代謝,例如DNA複製、修復及重組等過程中扮演重要角色。蛋白質結構上,單股DNA結合蛋白主要包含兩區域,其中N端與單股DNA結合有關區域又稱寡醣核苷酸結合結構區,而C端最末則包含一段保留序列,被認為與其他參與DNA代謝過程相關蛋白質之結合有關。本研究中,我們利用X光晶體繞射實驗並利用分子取代法決定C端截尾之胃幽門螺旋桿菌單股DNA結合蛋白與兩段聚核苷酸 (各包含35個胸腺嘧啶核苷) 所形成復合物之晶體結構,所得晶體最高解析度達2.3 Å。經結構分析,單股DNA主要藉由疏水性及靜電作用力纏繞於蛋白表面,其中與疏水性作用力有關之芳香族胺基酸殘基,包括苯丙胺酸37、50、56及色氨酸84均參與作用,其作用方式即利用其苯環衍生物與核甘酸之鹼基進行堆疊作用。於靜電作用力方面,帶正電荷之鹼性胺基酸殘基,例如精胺酸10、36、54及94,於蛋白表面形成一明顯帶正電區域以提供單股DNA結合。
Abstract

Single-stranded DNA binding protein (SSB) plays an important role in DNA metabolism, such as DNA replication, repair and recombination. The N-terminal domain of SSB forms an oligonucleotides/oligosaccharides binding (OB) fold, which function as single-stranded DNA (ssDNA) binding domain. The C-terminal conserved tail is supposed to participate in the protein-protein interaction. The crystal structure of C-terminal truncated SSB from Helicobacter pylori (residues 1-134, HpSSB134) bound to two dT(pT)34 [HpSSB134-dT(pT)34] was determined by molecular replacement method at 2.3 Å. The ssDNA wraps around four subunits of HpSSB134 by the electrostatic and hydrophobic stacking interactions. Four aromatic residues, Phe37, Phe50, Phe56 and Trp84, interact with the base of ssDNA by stacking arrangement. Meanwhile, four basic residues, Arg10, Arg36, Arg54 and Arg94, on the surface of HpSSB134 form a significant electrostatic path corresponding to the ssDNA binding.
中文摘要 i
Abstract ii
Contents iii
Chapter 1 Introduction 1
1.1 Helicobacter pylori 1
1.2 Single-stranded DNA binding proteins (SSB) 1
1.3 Characteristics of OB-fold in SSB 2
1.4 The binding modes of SSB 3
1.5 The associated proteins of SSB 4
1.6 Other single-stranded DNA binding proteins 4

Chapter 2 Materials and methods 6
2.1 Cloning, protein expression and purification 6
2.2 HpSSB134-dT(pT)34 complex preparation 7
2.3 Analytical gel filtration chromatography 7
2.4 Analytical ultracentrifugation 7
2.5 Crystallization 8
2.6 Data collection and processing 8
2.7 Structure determination and refinement 8

Chapter 3 Results 10
3.1 Protein purification and identification 10
3.1.1 Full-length HpSSB 10
3.1.2 C-terminal truncated HpSSB 10
3.2 HpSSB134-dT(pT)34 complex 11
3.3 Protein crystals 12
3.4 Space group determination 12
3.5 Structural determination 12
3.6 Model building 13
3.7 Structural refinement 13
3.8 Overall Structure of HpSSB134 14
3.9 Quaternary structure of HpSSB134 15
3.10 dT(pT)34 conformation 16
3.11 Residues involved in ssDNA binding 17
3.12 Crystal packing in HpSSB134-dT(pT)34 complex 18

Chapter 4 Discussions 20
4.1 Comparison of ssDNA binding mode between HpSSB134
and EcoSS 20
4.2 Potential electrostatic surface of SSB 20
4.3 The linkage of ssDNA between SSB 21

Appendix Figures and Tables 22

References 53
References

1. Danesh, J. (1999). Helicobacter pylori and gastric cancer: time for mega-trials? Br J Cancer 80, 927-9.
2. Scheiman, J. M. & Cutler, A. F. (1999). Helicobacter pylori and gastric cancer. Am J Med 106, 222-6.
3. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-47.
4. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328-33.
5. Lacy, B. E. & Rosemore, J. (2001). Helicobacter pylori: ulcers and more: the beginning of an era. J Nutr 131, 2789S-2793S.
6. Kinebuchi, T., Shindo, H., Nagai, H., Shimamoto, N. & Shimizu, M. (1997). Functional domains of Escherichia coli single-stranded DNA binding protein as assessed by analyses of the deletion mutants. Biochemistry 36, 6732-8.
7. Arcus, V. (2002). OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 12, 794-801.
8. Venclovas, C., Ginalski, K. & Kang, C. (2004). Sequence-structure mapping errors in the PDB: OB-fold domains. Protein Sci 13, 1594-602.
9. Genschel, J., Curth, U. & Urbanke, C. (2000). Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381, 183-92.
10. Handa, P., Acharya, N. & Varshney, U. (2001). Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 276, 16992-7.
11. Reddy, M. S., Guhan, N. & Muniyappa, K. (2001). Characterization of single-stranded DNA-binding proteins from Mycobacteria. The carboxyl-terminal of domain of SSB is essential for stable association with its cognate RecA protein. J Biol Chem 276, 45959-68.
12. Suck, D. (1997). Common fold, common function, common origin? Nat Struct Biol 4, 161-5.
13. Dabrowski, S., Olszewski, M., Piatek, R., Brillowska-Dabrowska, A., Konopa, G. & Kur, J. (2002). Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus - new arrangement of binding domains. Microbiology 148, 3307-15.
14. Eggington, J. M., Haruta, N., Wood, E. A. & Cox, M. M. (2004). The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol 4, 2.
15. Witte, G., Urbanke, C. & Curth, U. (2005). Single-stranded DNA-binding protein of Deinococcus radiodurans: a biophysical characterization. Nucleic Acids Res 33, 1662-70.
16. Bernstein, D. A., Eggington, J. M., Killoran, M. P., Misic, A. M., Cox, M. M. & Keck, J. L. (2004). Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci U S A 101, 8575-80.
17. Porter, R. D., Black, S., Pannuri, S. & Carlson, A. (1990). Use of the Escherichia coli SSB gene to prevent bioreactor takeover by plasmidless cells. Biotechnology (N Y) 8, 47-51.
18. Savvides, S. N., Raghunathan, S., Futterer, K., Kozlov, A. G., Lohman, T. M. & Waksman, G. (2004). The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci 13, 1942-7.
19. Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7, 648-52.
20. Lohman, T. M. & Overman, L. B. (1985). Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 260, 3594-603.
21. Bujalowski, W. & Lohman, T. M. (1986). Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25, 7799-802.
22. Cadman, C. J. & McGlynn, P. (2004). PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32, 6378-87.
23. Morimatsu, K. & Kowalczykowski, S. C. (2003). RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11, 1337-47.
24. Han, E. S., Cooper, D. L., Persky, N. S., Sutera, V. A., Jr., Whitaker, R. D., Montello, M. L. & Lovett, S. T. (2006). RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res 34, 1084-91.
25. Kantake, N., Madiraju, M. V., Sugiyama, T. & Kowalczykowski, S. C. (2002). Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc Natl Acad Sci U S A 99, 15327-32.
26. Hegde, S. P., Qin, M. H., Li, X. H., Atkinson, M. A., Clark, A. J., Rajagopalan, M. & Madiraju, M. V. (1996). Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci U S A 93, 14468-73.
27. Acharya, N. & Varshney, U. (2002). Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 318, 1251-64.
28. Richard, D. J., Bell, S. D. & White, M. F. (2004). Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res 32, 1065-74.
29. Gulbis, J. M., Kazmirski, S. L., Finkelstein, J., Kelman, Z., O'Donnell, M. & Kuriyan, J. (2004). Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 271, 439-49.
30. Witte, G., Urbanke, C. & Curth, U. (2003). DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res 31, 4434-40.
31. Bochkarev, A. & Bochkareva, E. (2004). From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14, 36-42.
32. Brill, S. J. & Stillman, B. (1991). Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5, 1589-600.
33. Wold, M. S. (1997). Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66, 61-92.
34. Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176-81.
35. Bochkarev, A., Bochkareva, E., Frappier, L. & Edwards, A. M. (1999). The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. Embo J 18, 4498-504.
36. Gomes, X. V. & Wold, M. S. (1995). Structural analysis of human replication protein A. Mapping functional domains of the 70-kDa subunit. J Biol Chem 270, 4534-43.
37. Gomes, X. V. & Wold, M. S. (1996). Functional domains of the 70-kilodalton subunit of human replication protein A. Biochemistry 35, 10558-68.
38. Pfuetzner, R. A., Bochkarev, A., Frappier, L. & Edwards, A. M. (1997). Replication protein A. Characterization and crystallization of the DNA binding domain. J Biol Chem 272, 430-4.
39. Matsumoto, T., Morimoto, Y., Shibata, N., Kinebuchi, T., Shimamoto, N., Tsukihara, T. & Yasuoka, N. (2000). Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by X-Ray structure analysis. J Biochem (Tokyo) 127, 329-35.
40. Kerr, I. D., Wadsworth, R. I., Cubeddu, L., Blankenfeldt, W., Naismith, J. H. & White, M. F. (2003). Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. Embo J 22, 2561-70.
41. Saikrishnan, K., Jeyakanthan, J., Venkatesh, J., Acharya, N., Sekar, K., Varshney, U. & Vijayan, M. (2003). Structure of Mycobacterium tuberculosis single-stranded DNA-binding protein. Variability in quaternary structure and its implications. J Mol Biol 331, 385-93.
42. Bochkareva, E., Belegu, V., Korolev, S. & Bochkarev, A. (2001). Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. Embo J 20, 612-8.
43. Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 1606-19.
44. Otwinowski, Z. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode Methods in Enzymology 276, p.307-326.
45. TONG, L. (1997). Rotation Function Calculations with GLRF Program METHODS IN ENZYMOLOGY 276, 594-611.
46. Kantardjieff, K. A. & Rupp, B. (2003). Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12, 1865-71.
47. A.Vagin. (1997). MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022-1025.
48. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-21.
49. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-55.
50. McRee, D. E. (1999). XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125, 156-65.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top