跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏祥
研究生(外文):Bo-Siang Huang
論文名稱:土層剪力波速評估液化潛能模式-最佳化類神經網路及因子融合
論文名稱(外文):Shear wave velocity of soil stratum to evaluate liquefaction potential model with optimal neural network and factor mix
指導教授:左天雄
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:188
中文關鍵詞:因子融合螞蟻演算法類神經網路土壤液化剪力波速最佳化
外文關鍵詞:factor mixoptimalizationsoil liquefactionneural networkant colony algorithmshear wave velocity
相關次數:
  • 被引用被引用:4
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
傳統上評估液化潛能之方法,除受人為主觀與經驗判斷之影響外;其中亦無法詳細考慮參數間高維度的複雜非線性關係,為此有必要尋找一有力之工具解決上述困境,以進一步提高液化判釋的正確性與適用性。
本研究主要為利用倒傳遞類神經網路及最佳化螞蟻演算法,完成建構「液化分類指數輸出模式」與初步建議台灣地區適用之「液化評估簡易步驟分析法」兩大部分工作。首先,蒐集歷年世界各地地震以剪力波速參數為主之液化觀測資料共318筆,並從中選取重要影響因子,經散佈圖與皮爾森積差檢定統計分析,將同類型相關程度高之因子進行融合,以減少雜訊互擾現象,作為網路學習範例;此外,針對隱藏層數、神經元數及訓練次數等網路架構設定,本研究亦引入螞蟻演算法在適當的搜尋範圍內完成最佳化選取,進而建構輸出為液化分類指數(目標值1代表液化、0代表非液化)之分析模式。評估結果發現其整體正確率可達98.43%,此外在與前人研究多方比較後皆能有更為優越之表現。
第二部分,以台灣地區129筆液化及非液化土層案例資料,將之經由最佳化類神經網路發展之液化分類指數輸出模式,配合逼近理論求取液化臨界狀態,並根據不同細料含量範圍區分,繪製剪力波速臨界液化曲線,再以近似迴歸的方法獲得計算土壤之反覆阻抗比公式CRR;而後依前人提出之半理論公式定義地震之反覆剪應力比CSR,藉此初步簡單的建議本土化適用之「液化評估簡易步驟分析法」,其可以安全係數(FS=CRR/CSR)定量的表示出現地土層液化潛能程度之大小。


誌謝……………………………………………………………………………..I
摘要…………………………………………………………………………….II
目錄…………………………………………………………………………...III
表目錄………………………………………………………………………..VII
圖目錄……………………………….……………………………………. .VIII
符號表……………………………….…………………………………….. ...XI

第一章 導論 …………………………………………………………………...1
1.1研究背景.……………………………………………………………...1
1.2研究目的………………………………………………………………2
1.3研究方法……….…………………………………………………...…2
1.4研究內容…….……………………………………………………...…3

第二章 文獻回顧……………………………………………………………...6
2.1土壤液化………………………………………………………………6
2.1.1土壤液化發生之機制與原因…..………………………………6
2.1.2影響土壤液化潛能之因素……………………………………8
2.2剪力波速於土壤液化關聯性之前人研究….. ……...…….………...11
2.2.1剪力波速評估土壤液化之特性………………………………12
2.2.2剪力波速評估土壤液化之發展沿革..………………………..13
2.2.3剪力波速評估土壤液化潛能-簡易步驟分析法……….. ….16
2.3類神經網路模式於土壤液化評估之應用……………………… ….22

第三章 類神經網路...……………………………………………...………...37
3.1生物神經元模型………………………………………………..……38
3.2人工神經元模型………………………………………………..……39
3.3類神經網路分類…………………………………………....…..……41
3.3.1依學習方式分類..…………..…………………………………41
3.3.2依網路架構分類…………..…………………………..………42
3.4倒傳遞類神經網路………. ………………......…….…………….....42
3.4.1倒傳遞類神經網路基本架構…………………………………43
3.4.2倒傳遞類神經網路學習演算法……..………………………..44
3.4.3倒傳遞類神經網路學習流程…………………………….. ….49
3.4.4倒傳遞類神經網路之特性..…………………………………..51

第四章 螞蟻演算法………………………………..………………………...57
4.1費洛蒙(Pheromone)模式:ACO演算法……………..………………57
4.1.1覓食原理…..……………………………..……………………57
4.1.2 ACO演算法一般性模式……...………………………………58
4.2 API演算模式….. ……...…….……………………………………...59
4.2.1覓食原理………………………………………………………60
4.3 API演算法一般性模式………. ………………...…….………….....60
4.3.1演算法符號元…………………………………………………60
4.3.2一般性演算程序……..………………………………………..63
4.4 API演算法於類神經網路之應用………..…. ………………...…...64

第五章 評估模式之建構與分析…………………..………………………...69
5.1範例資料庫來源……………..………………………………………69
5.2輸入因子之決定…..……..……………………..……………………70
5.3因子相關性檢定與融合……...…………………………………...…72
5.3.1散佈圖分析……………………………………………………73
5.3.2相關係數分析……..…………………………………………..74
5.3.3因子融合縮減……..…………………………………………..75
5.4 建構液化分類指數輸出模式………..…....... .………………...…...77
5.4.1網路輸入與輸出………………………………………………77
5.4.2資料前處理(data preprocessing)…….………………………..78
5.4.3螞蟻演算法最佳化類神經網路結構之參數設定……….. ….79
5.4.4 API螞蟻演算法之評估函數(evaluating function)….………..81
5.4.5 API螞蟻演算法於各模式之應用……………………………82
5.4.6網路評估結果之分析與討論……..…………………………..83
5.4.7網路模式之系統映射規則……………………………….. ….85
5.4.8與前人研究比較..……………………………………………..85
5.5 簡易步驟分析法之初步建立………..…....... .………………...…...86
5.5.1臨界液化曲線之逼近方法…………...…….…………………87
5.5.2液化及非液化案例資料蒐集…….…………….……………..88
5.5.3逼近結果之分析與討論…….………………….……………..89
5.5.4安全係數計算之分析流程建議…….……….………………..90

第六章 結論與建議………………………………..…………………….…132
6.1結論………………………….……………..…………………….…132
6.1.1液化分類指數輸出模式…..…………………………..…..…132
6.1.2簡易步驟分析法之初步建立……....……………..…………134
6.2 建議….. ……...…….………………………….…………………...135

參考文獻………………………………..…………………………..…….…137
附錄1:液化分類指數模式一*原始訓練集………………………..…….…148
附錄1:液化分類指數模式一*原始測試集………………………..…….…154
附錄2:液化分類指數模式一*正規化訓練集………………………..…….157
附錄2:液化分類指數模式一*正規化測試集………………………..…….163
附錄3:液化分類指數模式二*原始訓練集………………………..…….…166
附錄3:液化分類指數模式二*原始測試集………………………..…….…172
附錄4:液化分類指數模式二*正規化訓練集………………………..…….175
附錄4:液化分類指數模式二*正規化測試集………………………..…….181
附錄5:液化分類指數輸出手算範例……………..…………………..…….184
附錄6:相對重要性計算方法簡介……………………………………….…187


1.Adeli, H., and Yeh, C., (1989),“Perceptron learing in engineering design”,Microcomputers in Civil Engineering, Vol. 4, pp. 247-256.
2.Andrus, R. D., and Stokoe II, K. H., (1997),“Liquefaction resistance based on shear wave velocity ”,Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, National Center for Earthquake Engineering Research, Buffalo, pp. 89-128.
3.Andrus, R. D., Stokoe, K. H., and Chung, R. M., (1999),“Draft guidelines for evaluating liquefaction resistance using shear wave velocity measurements and simplified procedures”,NISTIR 6277, National Institute of Standards and Technology, Gaithersburg, Md.
4.Andrus, R. D., and Stokoe II, K. H., (2000),“Liquefaction resistance of soils from shear-wave velocity”,Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, pp. 1015-1025.
5.Bierschwale, J. G., and Stokoe II, K. H., (1984),“Analytical evaluation of liquefaction potential of sands subjected to the 1981 Westmorland earthquake”,Geotechnical Engineering Report GR-84-15, University of Texas at Austin, 231 p.
6.Been, K., and Jefferies, M. G., (1985),“ A state parameter for sands ”,Geotechnique, Vol. 35, No. 2, pp. 99-112.
7.Cohn, L. F., (1993),“Computing in civil engineering and building engineering”,Proceedings of the 5th International Conference on Computing in Civil and Building Engineering, ASCE.
8.Denebourg, J. L., Pasteels, J. M., and Verhaeghe, J. C., (1983),“Probabilistic Behaviour in Ants:a Strategy of Errors ”,Journal of Theorical Biology, Vol. 105, pp. 259-271.
9.Dorigo, M., Maniezzo, V., and Colorni, A., (1991),“Positive Feedback as a Search Strategy”,Technical Report, No. 91-016, Politecnico di Milano, Italy.
10.Dorigo, M., Maniezzo, V., and Colorni, A., (1991),“Ant System:An Autocatalytic Optimizing Process”,Technical Report, No. 91-016 Revised, Politecnico di Milano, Italy.
11.Dorigo, M., Maniezzo, V., and Colorni, A., (1991),“Distributed Optimization by Ant Colonies”,Proceedings of the European Conference on Artificial Life, pp. 134-142.
12.Dorigo, M., Gambardella, L. M., (1997),“Ant Colonies for the Traveling Salesman Problem”,BioSystems, Vol. 43, pp. 73-81.
13.Dorigo, M., Gianni, D. C., and Gambardella L. M., (1999),“Ant Algorithms for Discrete Optimization”,Artificial Life, Vol. 5, No. 3, PP. 137-172.
14.Ellis, G. W., Yao, C., Zhao, R., and Penumadu, D., (1995),“Stress-strain modeling of sands using artificial neural network”,Journal of Geotechnical Engineering, Vol. 121, No. 5, pp. 429-435.
15.Garrett, J. H., (1992),“Neural networks and their applicability within civil engineering”,Proc. 8th Annual Conf. of Computing in Civil Engineering and Geographic Information Systems Symposium, ASCE, pp. 1155-1162.
16.Ghaboussi, J., (1994),“Some applications of neural networks in structural engineering”,Proceedings of the 11th Conference on Analysis and Computation Atlanta, ASCE, pp. 25-36.
17.Goh, A. T. C., (1994),“Seismic liquefaction potential assessed by neural networks”,ASCE, Journal of Geotechnical Engineering, Vol. 120, No. 9, pp. 1467-1480.
18.Goh, A. T. C., (1996a),“Pile driving records reanalyzed using neural networks”,ASCE, Journal of Geotechnical Engineering, Vol. 122, No. 6, pp.492-495.
19.Goh, A. T. C., (1996b),“Neural-network modeling of CPT seismic liquefaction data”,ASCE, Journal of Geotechnical Engineering, Vol. 122, No. 1, pp. 70-73.
20.Goh A. T. C., (2002),“Probabilistic neural network for evaluating seismic liquefaction potential”,Canadian Geotechnical Journal, Vol. 39, pp. 219-232.
21.Holzer, T. L., Bennett, M. J., Youd, T. L., and Chen, A. T. F., (1988), Parkfield, California, liquefaction prediction:Bulletin of the Seismological Society of America, Vol. 78, No. 1, pp. 385-389.
22.Hangan, M. T., and Menhaj, M. B., (1994),“Training feedforward networks with the Marquardt algorithm”,IEEE Transactions on Neural Network, Vol. 5, No. 6, pp. 989-993.
23.Hangan, M. T., Demuth, H. B., and Beale, B., (1996),“Neural network design”,Thomson Learning, Boston.
24.Ishihara, K.,(1993),“Liquefaction and flow failure during earthquakes”,Geotechnique, Vol. 43, No. 3, pp. 351-415.
25.Juang, C. H., and Chen, C. J. (2000a),“A rational method for development of limit state for liquefaction evaluation based on shear wave velocity measurements”,International Journal for Numerical and Analytical Method in Geomechanics, Vol. 24, pp. 1-27.
26.Juang, C. H., Chen, C. J., Jiang, T., and Andrus, R. D., (2000b),“Risk-based liquefaction potential evaluation using standard penetration tests,Canadian Geotechnical Journal, Vol. 37, pp. 1195-1208.
27.Juang, C. H., Chen, C. J., Tang, W. H., and Rosowsky, D. V., (2000c), “CPT-based liquefaction analysis part1;determination of limit state function”,Geotechnique, Vol. 50, No. 5, pp. 583-592.
28.Juang, C. H., Chen, C. J., Tang, W. H., and Rosowsky, D. V., (2000d), “CPT-based liquefaction analysis part2:reliability for design”, Geotechnique, Vol. 50, No. 5, pp. 593-599.
29.Juang, C. H., Chen, C. J., and Jiang, T., (2001),“Probabilistic framework for liquefaction potential by shear wave velocity”,Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 8, pp. 670-678.
30.Kayen, R. E., Mitchell, J. K., Seed, R. B., Lodge, A., Nishi, S., and Coutinho, R., (1992),“Evaluation of SPT-, CPT-, and shear wave -based methods for liquefaction potential assessment using Loma Prieta data”,Proceedings, Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report NCEER-92-0019, National Center for Earthquake Engineering Research, Buffalo, NY, Vol. 1, pp. 177-204.
31.Kayabali, K., (1996),“Soil liquefaction evaluation using shear wave velocity”,Engineering Geology, Vol. 44, pp. 121-127.
32.Lee, K. L., and Fitton, J. A., (1969),“ Factors affecting the cyclic loading strength of soil”,Vibration Effects of Earthquake on Soils and Foundations, ASTM, STP450, pp. 71-96.
33.Lodge, A. L., (1994),“Shear wave velocity measurement for subsurface characterization”,Ph.D. Dissertation, University of California at Berkeley.
34.Monmarche, N., Venturini, G., and Slimane M., (2000),“On How Pachycondyla Apicalis ants suggest a new search algorithm”,Future Generation Computer Systems, Vol. 16, pp. 937-946.
35.Pham, D. T., and Liu, X., (1999),“Neural networks for identification”,Prediction and Control, Springer-Verlag, London.
36.Rumelhart, D. E., Hinton, G. E., and Williams, R. J., (1986a),“Learning internal representations by error propagation”,Parallel Distributed Processing, Vol. 1, Chap. 8, MIT Press, Cambridge, MA, pp. 318-362.
37.Rumelhart, D. E., Hinton, G. E., and Williams, R. J., (1986b),“Learning representations by back-propagating errors”,Nature, Vol. 323, pp. 533-536.
38.Robertson, P. K., Woeller, D. J., and Finn, W. D. L., (1992),“Seismic cone penetration test for evaluating liquefaction potential under cyclic loading”,Canadian Geotechnical Journal, Vol. 29, pp. 686-695.
39.Robertson, P. K., Sasitharan, S., Cunning, J. C., and Sego, D. C., (1995), “Shear wave velocity to evaluate flow liquefaction”,ASCE, Journal of Geotechnical Engineering, Vol. 121, No. 3, pp.262-273.
40.Robertson, P. K., and Wride, C. E., (1998),“Evaluating cyclic liquefaction potential using the cone penetration test”,Canadian Geotechnical Journal, Vol. 35, pp. 442-459.
41.Rognvaldsson, T. S., (2001),“The multilayer perceptron”,Learning and Adaptive System Lecture Notes, Halmstad University, Sweden.
42.Seed, H. B., and Lee, K. L., (1966),“ Liquefaction of saturated sands during cyclic loading”,Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM6, pp. 105-134.
43.Seed, H. B., and Idriss, I. M., (1967),“Analysis of soil liquefaction:Nigata earthquake ”,Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, pp. 83-108.
44.Seed, H. B., Lee, K. L., and Idriss, I. M., (1969),“An analysis of the Sheffield dam failure”,Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. SM6, pp. 1453-1490.
45.Seed, H. B., and Idriss, I. M., (1971),“Simplified procedures for evaluation soil liquefaction potential”,Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
46.Seed, H. B., and Peacock, W. H., (1971),“Test procedures for measuring soil liquefaction characteristics ”,Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM8, pp. 1099-1199.
47.Seed, H. B., Mori, K., and Chan, C. K., (1975),“ Influence of seismic history on the liquefaction characteristics of sands”,Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.
48.Seed, H. B., (1976),“Evaluation of soil liquefaction effects on level ground during earthquakes”,Liquefaction Problems in Geotechnical Engineering, ASCE Preprint 2752, Philadelphia, Pa., pp. 1-104.
49.Seed, H. B., (1979),“Soil liquefaction and cyclic mobility evaluation for level ground during earthquake”,Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255.
50.Seed, H. B., Idriss, I. M., and Arango I., (1983),“Evaluation of liquefaction potential using field performance data”,Journal of the Geotechnical Engineering Division, ASCE, Vol. 109, No. 3, pp. 458-482.
51.Stokoe, K. H., Roesset, J. M., Bierschwale, J. G., and Aouad, M., (1988),“Liquefaction potential of sands from shear wave velocity”,Proceedings of Ninth WCEE (III), pp. 213-218.
52.Tatsuoka, F., Iwaski, T., Tokida, K., and Konno, M., (1981),“Cyclic undrained triaxial strength of sampled sand affected by confining pressure”,Soil and Foundations, Japanse Society of Soil Mechanics and Foundation Engineering, Vol. 21, No. 2, pp. 115-120.
53.Tokimatsu, K., and Uchida, A., (1990),“Correlation between liquefaction resistance and shear wave velocity”,Soils and Foundations, Vol. 30, No. 2, pp. 33-42.
54.Tokimatsu, K., Kuwayama, S., and Tamura, S., (1991),“Liquefaction potential evaluation based on Rayleigh wave investigation and its comparison with field behavior”,Proceedings, Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, held in St. Louis, Missouri, S. Prakash, Ed., University of Missouri-Rolla, Vol. 1, pp. 357-364.
55.Vanluchene, R. D., and Sun, R., (1990),“Neural networks in structural engineering”,Microcomputers in Civil Engineering, Vol. 5, pp. 207-215.
56.Wong, R. T., Seed, H. B., and Chan, C. K., (1975),“Cyclic loading liquefaction of gravelly soils”,Journal of the Soil Mechanic and Foundation Division, ASCE, Vol. 101, No. SM6, pp. 571-583.
57.Wilamowski, B. M., Iplikci, S., Kaynak, O., and Efe, M. O., (2001),“An algorithm for fast convergence in training neural networks”,IEEE Proceeding of International Joint Conference on Neural Networks, Vol. 3, pp. 1778-1782.
58.Youd, T. L., and Wieczorek G. F., (1982),“Liquefaction and secondary ground failure”,The Imperial Valley, California, Earthquake of October 15, 1979, U.S. Geological Survey Profl. Paper 1254, U.S. Geological Survey, Menlo Park, Calif., pp. 223-246.
59.Youd, T. L., and Noble, S. K.,(1997),“Magnitude scaling factor”,Proc., NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. for Earthquake Engrg. Res., State Univ. of New York at Buffalo, pp.149-165.
60.Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Jr, L. F. H., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson III, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., and Stokoe II, K. H., (2001),“Liquefaction of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils”,Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 817-833.
61.王進德、蕭大全(1994),「類神經網路與模糊控制入門」,全華圖書。
62.江彭(1995),「飽和砂土動態強度之研究-台灣地區砂性土壤」,國立交通大學土木工程研究所碩士論文。
63.李咸亨、陳慧慈(1997),「液化與地震災害」,國家地震工程研究中心簡訊,第二十一期,第1-5頁。
64.邱建銘(2000),「以剪力波速評估員林地區液化及其地層動態反應研究」,國立台灣大學土木工程學研究所碩士論文。
65.吳偉特(1979),「台灣地區砂性土壤液化潛能之初步分析」,中國土木水利,第六卷,第二期,第39-70頁。
66.吳俊彥(1996),「以類神經網路模式評估砂質土壤液化」,國立台灣大學土木工程學研究所碩士論文。
67.林炳森、謝基政、黃群凱、李仁森(2000),「921集集大地震南投市液化初步調查研究」,行政院國家科學委員會。
68.夏啟明(1992),「細料塑性程度對台北盆地粉質砂液化潛能之影響」,國立台灣大學土木工程學研究所。
69.唐瑋廷(2001),「砂性土層液化潛能評估-模糊類神經網路」,國立台灣大學土木工程學研究所碩士論文。
70.亞新工程顧問股份有限公司(2000),「南投、霧峰地區土壤液化調查研究」,行政院國家科學委員會。
71.亞新工程顧問股份有限公司(2000),「土壤液化評估與處理對策研擬第一期計畫(彰化縣員林鎮、大村鄉與社頭鄉)現狀調查報告」,行政院國家科學委員會。
72.徐松圻、陳明澤(2003),「用類神經網路建立以SPT為主之臨界液化曲線」,第十屆大地工程研討會論文集,第295-298頁。
73.黃俊鴻、陳正興(1998),「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁。
74.黃富國、余明山、何政弘(1999),「九二一集集大震土壤液化震害與問題探討」,土木工程技術,第三卷,第三期,第47-79頁。
75.黃俊鴻、楊志文(2001),「以集集地震案例資料建立土壤臨界液化強度曲線」,中國土木水工程學刊,第十三卷,第二期,第339-352頁。
76.黃俊鴻、張吉佐、周功台、余明山、簡文郁(2002),「由集集地震液化案例探討液化評估方法本土適用性之研究」,交通部台灣區國道新建工程局。
77.陳怡睿、楊登成、李東屏、邱彥智、紀雲曜(2002),「運用邏輯迴歸模式評估土壤液化潛勢之研究」,液化潛能評估方法及潛能圖之製作研討會論文集,第C1-C10頁。
78.陳毓山(2003),「螞蟻演算法最佳化倒傳遞類神經網路於土層剪力波速評估之研究」,國立台灣大學土木工程學研究所碩士論文。
79.褚炳麟、賴聖耀、張益銘、陳明澤(2000),「921集集大地震霧峰地區土壤液化潛能評估」,行政院國家科學委員會。
80.張延任(2001),「以整合式模糊群聚類神經網路評估土壤液化」,國立海洋大學河海工程研究所碩士論文。
81.葉怡成(2001),「類神經網路模式應用與實作」,儒林圖書。
82.辜炳寰(2002),「類神經網路於土壤液化評估之應用」,國立成功大學土木工程研究所碩士論文。
83.溫紹炳、雷大同、黃記嚴(2001),「地震誘發土壤液化區之地質條件分析」,集集地震土壤液化總評估研究-九十學年度期中研究成果研討會論文集,第39-63頁。
84.曾炫學(2003),「土石流發生臨界曲線之研究-模糊集合及類神經網路」,國立台灣大學土木工程學研究所碩士論文。
85.鍾毓東、謝百鍾(1986),「簡易土壤液化分析法」,結構工程,第一卷,第三期,第37-47頁。
86.謝祥暉(2001),「回填土壤剪力波特性與抗液化強度相關性之研究」,國立海洋大學河海工程研究所碩士論文。
87.賴聖耀(2002),「以921地震液化案例之SPT-N值建立土壤液化潛能判別模式」,液化潛能評估方法及潛能圖之製作研討會論文集,第B1-B9頁。
88.羅華強(2001),「類神經網路-MATLAB的應用」,清蔚科技。
89.羅健民(2003),「剪力波速評估土壤液化潛能-模糊類神經網路」,國立台灣大學土木工程學研究所碩士論文。
90.蘇木春、張孝德(1999),「機器學習:類神經網路、模糊系統以及基因演算法則」,全華科技。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 11. 林宏六、黃汝慧(1998),技術移轉面面觀,工業財產權與標準,第69期,頁17-35。
2. 40. 袁建中、郭春河(1997),研究機構選擇接受技術移轉廠商模式研究,中山管理評論,頁121-140。
3. 38. 鄭中人(1991),技術移轉的本質,臺灣經濟研究月刊,第十四卷,第3期,頁27-30。
4. 36. 馮震宇(1995),技術移轉之類型及其比較。工業財產權與標準,23期,頁94-108。
5. 15. 劉瑞圖(1994),科技管理(十)--科技企業的技術移轉,工業簡訊,第24卷,頁60-72。
6. 14. 劉瑞圖(1994),科技管理(九)--科技企業的技術移轉,工業簡訊,第24卷,頁37-47。
7. 4. 石滋宜(1984),談技術移轉與技術生根,產業經濟,第39期,頁15-23。
8. 13. 劉瑞圖(1994),科技管理(八)--科技企業的技術移轉,工業簡訊,第24卷,頁34-45。
9. 65.吳偉特(1979),「台灣地區砂性土壤液化潛能之初步分析」,中國土木水利,第六卷,第二期,第39-70頁。
10. 1. 于卓民(1998),國際技術移轉,智慧財產權管理季刊,第16期,頁10-13。
11. 12. 林麗香(1999),國防技術發展與實務-以航太工業為例,《空軍學術月刊》,第509期,頁37-45。
12. 85.鍾毓東、謝百鍾(1986),「簡易土壤液化分析法」,結構工程,第一卷,第三期,第37-47頁。
13. 74.黃富國、余明山、何政弘(1999),「九二一集集大震土壤液化震害與問題探討」,土木工程技術,第三卷,第三期,第47-79頁。
14. 73.黃俊鴻、陳正興(1998),「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁。
15. 41. 李國鼎(1978),中美兩國間工業技術的雙向交流,自由中國之工業,第50卷第2期,頁2-5。