|
參考文獻 [1]Yongsoo Choi, Mechanical properties of nanocrystalline copper under thermal load, Physics Letters p.758-762, 2012. [2]Sangil Hyun, Mechanical properties of nanocrystalline copper under thermal load, Physics Letters p.758-762, 2012. [3]Youngho Park, Mechanical properties of nanocrystalline copper under thermal load, Physics Letters p.758-762, 2012. [4]S. J. Plimpton, Fast Parallel Algorithms for Short Range Molecular Dynamics, Journal of Computation Physics, Vol. 117, pp. 1-19, 1995. [5]K. T. Lim, S. Brunett, “Molecular Dynamics for Very Large Systems on Massively Parallel Computers: The MPSim Program,” J. of Computational Chemistry, Vol. 18, No. 14, pp. 501~521, 1997. [6]D. Roccatano, R. Bizzarri, “Development of a Parallel Molecular Dynamics Code on SIMD Computers: Algorithm for Use of Pair List Criterion,” J. of Computational Chemistry, Vol. 19, No. 7, pp. 685~694, 1998. [7]S. Toyoda, H. Miyagawa, “Development of MD Engine: High-Speed Acceleration with Parallel Processor Design for Molecular Dynamics Simulations,” J. of Computational Chemistry, Vol. 20, No. 2, pp. 185~199, 1999. [8]Andrew G. van Melsen. From Atomos to Atom. Mineola, N.Y.: Dover Publications, 1952. [9]Thomson, J. J.. "On bodies smaller than atoms". The Popular Science Monthly. Bonnier Corp.: 323–335, 2009. [10]"J.J. Thomson". Nobel Foundation. 1906. Retrieved, 2007. [11]"The Gold Foil Experiment". myweb.usf.edu, 2001 [12]Scully, Marlan O.; Lamb, Willis E.; Barut, Asim. "On the theory of the Stern-Gerlach apparatus". Foundations of Physics, 1987. [13] TED-Ed. "What is the Heisenberg Uncertainty Principle” - Chad Orzel, 2014. [14]Brown, Kevin (2007). "The Hydrogen Atom". MathPages. Retrieved ,2007. [15]Harrison, David M. "The Development of Quantum Mechanics". University of Toronto. Archived from the original, 2007. [16] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Properties. IV. The Equations of Hydrodynamics,” J. Chem. Phys., Vol. 18, pp. 817-823, 1950. [17]S. M. Foiles, M. I. Baskes and M. S. Daw, Embedded-Atom-Method- Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys, Physical Review B, Vol. 33, pp.7983-7991, 1986. [18]J. E. Lennard-Jones, Cohesion, Proceedings of the Physical Society, Vol. 43, pp. 461-482, 1931. [19]I. G. Kaplan, Handbook of Molecular Physics and Quantum Chemistry, Wiley, 2003. [20]T. C. Choy, Effective Medium Theory: Principles and Applications, Oxford Press, 1999. [21]M. Z. Bazant and E. Kaxiras, Environment Dependent Interatomic Potential for Bulk Silicon, Physics Review B, Vol. 56, p. 85427, 1997. [22]A. P. Sutton and J. Chen, Long-Range Finnis-Sinclair Potentials, Philosophical Magazine Letter, Vol. 61, pp. 139-146, 1990. [23]B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, Journal of Chemical Physics, Vol. 31, pp. 459-466, 1959. [24]J. M. Haile, “Molecular Dynamics Simulation: Elementary Methods”, John Wiley & Sons, INC., 1997. [25]D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997. [26]J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston, 1990. [27]M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, 1991. [28]D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996. [29]D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin, 1990. [30] J. M. Haile, “Molecular Dynamics Simulation: Elementary Methods”,John Wiley & Sons, INC., 1997. [31]J. A. Zimmerman, E. B. Webb, J. J. Hoyt, R. E. Jones, P. A. Klein and D. J. Bammann, Calculation of Stress in Atomistic Simulation, Modeling Simulation Material Science Engineering, Vol.12, pp. 319-332, 2004. [32]Z. S. Basinski, M.S. Duesbery and R. Taylor, Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice, American Journal of Physics, Vol. 49, pp. 2160-2180, 1971. [33] N. Miyazaki and Y. Shiozaki, Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method, International Journal Series A-Mechanics and Material Engineering, Vol. 39, pp. 606-612, 1996. [34]D. L. Chen and T. C. Chen, Mechanical Properties of Au Nanowires under Uniaxial Tension with High Strain-Rate by Molecular Dynamics, Nanotechnology, Vol. 16, pp. 2972-2981, 2005. [35]Petrenko, V. F.; Whitworth, R. W. Physics of Ice. Oxford University Press, 1999. [36]Bernal, J. D.; Fowler, R. H. "A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions". The Journal of Chemical Physics, 1933. [37] Hook, J.R.; Hall, H.E. Solid State Physics. Manchester Physics Series (2nd ed.). John Wiley & Sons, 2010. [38]International Tables for Crystallography. Volume A, Space-group symmetry, 2006. [39]"Direct and reciprocal lattices". CSIC Dept de Cristalografia y Biologia Estructural, 2017 [40]Ashcroft, N.; Mermin, D. "Chapter 7". Solid State Physics. Brooks/Cole Thomson Learning, Inc., 1976. [41]Physics-133 Lecture Notes Spring Marion Campus. physics.ohio-state.edu, 2004. [42]Okumura, K. & Templeton, I. M. "The Fermi Surface of Caesium". Proceedings of the Royal Society of London A, 1965. [43]Shriver and Atkins'' Inorganic Chemistry. pp. 74 ,Oxford University Press, 2010. [44]Daw, Murray S.; Foiles, Stephen M.; Baskes, Michael I. "The embedded-atom method: a review of theory and applications". Materials Science Reports. 9 (7–8): 251–310, 1993. [45]Brewer, Scott H.; Franzen, Stefan. "Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy". The Journal of Physical Chemistry B. 106, 2002. [46]International Tables for Crystallography. Vol. A, Section 2.1.3, pp. 14–16, 2006. [47]Prince, E., ed. International Tables for Crystallography. International Union of Crystallography, 2006. [48] Hiller, Howard. "Crystallography and cohomology of groups". Amer. Math. Monthly. 93: 765–779, 1986. [49]Barlow, W, "Über die geometrischen Eigenschaften starrer Strukturen und ihre Anwendung auf Kristalle", Z. Kristallogr., 23: 1–63, 1864. [50]Bieberbach, Ludwig, "Über die Bewegungsgruppen der Euklidischen Räume", Mathematische Annalen, 70, 1911 [51]Bieberbach, Ludwig, "Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich", Mathematische Annalen, 1912. [52]Brown, Harold; Bülow, Rolf; Neubüser, Joachim; Wondratschek, Hans; Zassenhaus, Hans, Crystallographic groups of four-dimensional space, New York: Wiley-Interscience, 1978. [53]Conway, John Horton; Delgado Friedrichs, Olaf; Huson, Daniel H.; Thurston, William P., "On three-dimensional space groups", Beiträge zur Algebra und Geometrie". Contributions to Algebra and Geometry, 2012. [54]Ellis, Arthur B.; et al. Teaching General Chemistry: A Materials Science Companion (3rd ed.). Washington, DC: American Chemical Society, 1995. [55]Moore, Lesley E.; Smart, Elaine A. Solid State Chemistry: An Introduction (3rd ed.). Boca Raton, FL: Taylor & Francis, CRC. p. 8, 2005. [56]Schaffer; Saxena; Antolovich; Sanders; Warner. The Science and Design of Engineering Materials (2nd ed.). New York, NY: WCB/McGraw-Hill. pp. 81–88, 1999. [57]Callister, W. Materials Science and Engineering (6th ed.). San Francisco, CA: John Wiley and Sons. pp. 105–114, 2002. [58]Neil W. Ashcroft and N. David Mermin, Solid State Physics ,Harcourt: New York, 1976) [59]J. W. Edington Practical electron microscopy in materials science, N. V. Philips'' Gloeilampenfabrieken, Eindhoven, 1976. [60]Franz Aurenhammer. Voronoi Diagrams – A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys, 23(3):345–405, 1991. [61]Atsuyuki Okabe, Barry Boots, Kokichi Sugihara & Sung Nok Chiu. Spatial Tessellations – Concepts and Applications of Voronoi Diagrams. 2nd edition. John Wiley, 2000. [62]Q.T.Tran, D.Tainar and M.Safar "Transactions on Large-Scale Data- and Knowledge-Centered Systems", pag357, 2009. [63]Daniel Reem, An algorithm for computing Voronoi diagrams of general generators in general normed spaces, In Proceedings of the sixth International Symposium on Voronoi Diagrams in science and engineering, pp. 144–152, 2009. [64]Daniel Reem, The geometric stability of Voronoi diagrams with respect to small changes of the sites, arXiv 1103.4125, 2011. [65]G.F. Voronoi. "Nouvelles applications des paramètres continus à la théorie de formes quadratiques". Journal für die reine und angewandte Mathematik. 134: 198–287, 1908. [66]Liebling, Thomas; Pournin, Lionel. "Voronoi diagrams and Delaunay triangulations: ubiquitous Siamese twins", Documenta Mathematica. Extra Volume ISMP. pp. 419–431, 2012. [67]Mark de Berg; Marc van Kreveld; Mark Overmars; Otfried Schwarzkopf. Computational Geometry (Third ed.). Springer-Verlag. Farthest-Point Voronoi Diagrams. Includes a description of the algorithm, 2008. [68]Skyum, Sven. "A simple algorithm for computing the smallest enclosing circle". Information Processing Letters. 37 (3): 121–125. d, contains a simple algorithm to compute the farthest-point Voronoi diagram, 1991. [69]Biedl, Therese; Grimm, Carsten; Palios, Leonidas; Shewchuk, Jonathan; Verdonschot, Sander (2016). "Realizing farthest-point Voronoi diagrams". Proceedings of the 28th Canadian Conference on Computational Geometry , 2016.
|