跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.163) 您好!臺灣時間:2025/11/26 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳宜
研究生(外文):Chia-Yi Chen
論文名稱:10-Gbps 可見雷射光通訊系統
論文名稱(外文):10-Gbps Visible Laser Light Communication Systems
指導教授:呂海涵呂海涵引用關係
口試委員:紀裕傑李忠益張慶鴻何文章曾世杰鄒志偉
口試日期:2014-07-12
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:70
中文關鍵詞:可見光通訊自由空間紅光雷射
外文關鍵詞:visible light communicationfree spacered laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:477
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
可見光通訊是近年來新興的無線光通訊技術,讓可見光除了顯示與照明應用之外,兼具自由空間(Free-Space)光信號傳輸功能。可見光通訊是世界上目前許多光通訊研發團隊所努力研究突破的亮點主題,高而亮度白光LED則是各國光通訊研發團隊用來作為可見光通訊系統的光源。可見光通訊傳輸系統可以用來取代RF無線通訊傳輸系統,不但可以減少及防止電磁波的干擾,且在許多禁止使用電磁波的場所(諸如醫院、飛機機艙、煉油廠……),可見光通訊可以彌補RF無線通訊的不便。「高傳輸速率」及「長距離自由空間傳輸」是可見光通訊系統所努力追求的目標,世界上每一個可見光通訊研發團隊都希望能在這兩個目標上有所革命性的突破。然而受限於白光LED光源頻寬及功率的限制,「傳輸速率」及「自由空間傳輸距離」在各個研發團隊的努力開發下都已達到極限值(~1Gbps/5m)。為了能夠突破「傳輸速率」及「自由空間傳輸距離」兩個極限瓶頸,本論文提出了使用紅光雷射光作為可見光通訊系統的光源,這是世界上第一個提出利用紅光雷射光來建構超高速率可見光通訊傳輸系統,不但傳輸速率可高達10Gbps、且自由空間傳輸距離亦可達6m之遠,突破可見光通訊系統 「傳輸速率」及「自由空間傳輸距離」 兩大極限瓶頸。

The visible light communication (VLC) is a novel wireless light communication technology developed over the last few years, which makes the visible light not only capable for display and illumination but also for light signal transmission within free space. VLC is now a hot topic targeted by worldwide light communication R&D teams for a breakthrough. The high illumination white light LED is now used by many light communication R&D teams in the world as the light source of VLC system. The VLC transmission system is capable of replacing RF wireless communication transmission system, which could not only reduce or prevent the interference of electromagnetic wave but is also allowed to be used in the area where a RF system is prohibited such as hospital, airplane, oil refinery etc. VLC could eliminate many inconveniences in using RF wireless communication. “High transmission rate” and “Long free-space transmission distance” are two objectives the VLC system seeks for achievement. Every VLC R&D team in the world is so urge to have any revolutionary breakthrough on these two objectives. However, limited by the bandwidth and power of white light LED light source, both of the above have reached their ultimate values (~1Gbps/5m) after being developed diligently by each R&D team. In order to break through the limitation of “transmission rate” and “free-space transmission distance”, here we propose using a red laser beam as the light source of VLC transmission system, which makes us the first team propose using the red laser beam to build an extra high speed VLC transmission system with the transmission rate as highest as 10Gbps and a free-space transmission distance of 6m. This breakthrough resolved the bottlenecks of VLC system regarding both “transmission rate” and “free-space transmission distance”.

摘 要 i
Abstract iii
誌謝 v
Contents vi
Table Captions viii
Figure Captions ix
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Research Objectives 4
1.3 Structure of the dissertation 6
Chapter 2 10m/500Mbps WDM visible light communication systems 10
2.1 Introduction 10
2.2 Experimental setup 12
2.3 Experimental results and discussions 12
Chapter 3 Bidirectional 16-QAM OFDM in-building network over SMF and free-space VLC transport 19
3.1 Introduction 19
3.2 Experimental setup 20
3.3 Experimental results and discussions 23
Chapter 4 Full-duplex lightwave transport systems based on long-haul SMF and optical free-space transmissions 25
4.1 Introduction 25
4.2 Experimental setup 27
4.3 Experimental results and discussions 29
Chapter 5 An optical free-space WDM transport system 35
5.1 Introduction 35
5.2 Experimental setup 36
5.3. Experimental results and discussions 38
Chapter 6 A 10-Gbps optical WiMAX transport system 45
6.1 Introduction 45
6.2 Experimental setup 47
6.3. Experimental results and discussions 49
Chapter 7 Conclusions 58
7.1 10m/500Mbps WDM visible light communication systems 59
7.2 Bidirectional 16-QAM OFDM in-building network over SMF and free-space VLC transport 59
7.3 Full-duplex lightwave transport systems based on long-haul SMF and optical free-space transmissions 60
7.4 An optical free-space WDM transport system 60
7.5 A 10-Gbps optical WiMAX transport system 61
Reference 62
Publication List 67
Journal Papers 67
Conference Papers 70

[1]T. Komine, and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans.Consum. Electron. , vol. 49, pp. 71-79, 2003.
[2]R. Perez-Jimenez, J. Rufo, C. Quintana, J. Rabadan and F.J. Lopez-Hernandez, “Visible Light Communication Systems for Passenger In-Flight Data Networking,” IEEE International Conference on Consumer Electronics, pp. 445-446, 2011.
[3]J. Rufo, C.Quintana, F.Delgado, J.Rabadan, R.Perez-Jimenez, “Considerations on modulations and protocols suitable for visible light communications (VLC) channels,” IEEE CCNC Research Student Workshop, pp. 362-364, 2011.
[4]A. M. Khalid, G. Cossu, R. Corsini, M. Presi and E. Ciaramella, “Demonstrating a hybrid radio-over-fiber and visible light communication system,” ELECTRONICS LETTERS, vol. 47, No. 20, 2011.
[5]Do Ky Son, Eun Byeol Cho, Chung Ghiu Lee, “Demonstration of visible light communication link for audo and video transmission,” 2010.
[6]D. O''Brien, H. L. Minh, L. Zeng, G. Faulkner, K.Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects, ” Proc. of SPIE, vol. 7091, 709106, 2008
[7]Grubor J., Gaete, J.-O., Waleski-Js, Randel-S, Langer-Kd, “High-speed wireless indoor communication via visible light,” ITG Fachbericht, pp. 203-208, 2007
[8]F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and H. T. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” Conf. on Opt. Fiber Commun. (OFC) OTh1G4, 2013.
[9]Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in-door visible light communication system,” Conf. on Opt. Fiber Commun (OFC) JWA83, 2011.
[10]T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100-107, 2004.
[11]Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203-1208, 2013.
[12]C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218-16223, 2012.
[13]C. Y. Chen, P. Y. Wu, H. H. Lu, Y. P. Lin, J. Y. Wen, and F. C. Hu, “Bidirectional 16-QAM OFDM in-building network over SMF and free-space VLC transport,” Opt. Lett. 38(13), 2345-2347, 2013.
[14]W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919-9924, 2012.
[15]D. C. O''Brien, “Visible light communications: challenges and potential,” IEEE Photon. Conf. 365-366, 2011.
[16]B. Bai, Z. Xu, and Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” Wireless and Opt. Commun. Conf. (WOCC), 1-5, 2010.
[17]Y. H. Son, S. C. An, H. S. Kim, Y. Y. Won, and S. K. Han, “Visible light wireless transmission based on optical access network using white light-emitting diode and electroabsorption transceiver,” Microwave and Opt. Technol. Lett. 52(4), 790-793, 2010.
[18]S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” IEEE Intelligent Vehicles Symposium, 1033-1038, 2009.
[19]H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(4), 1243-1245, 2008.
[20]J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett. 21(20), 1511-1513, 2009.
[21]H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063-1065, 2009.
[22]J. Vucic, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE/OSA J. Lightw. Technol. 28(24), 3512-3518, 2010.
[23]C. Y. Chen, P. Y. Wu, H. H. Lu, Y. P. Lin, Ming-Cian Gao, Jian-Ying Wen, and H. W. Chen, “Bidirectional phased-modulated hybrid cable television/radio-over- fiber lightwave transport systems,” Opt. Lett. 38, 404, 2013.
[24]Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express 20, 23019, 2012.
[25]W. Y. Lin, C. H. Chang, H. H. Lu, P. C. Peng, Y. P. Lin, C. Y. Chen, and C. Y. Li, “A hybrid CATV/OFDM long-reach passive optical network architecture,” Opt. Express 20, 4219, 2012.
[26]C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16, 12096, 2008.
[27]W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500Mbps WDM visible light communication systems,” Opt. Express 20, 9919, 2012.
[28]K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Lett. 23, 519, 2011.
[29]C. Y. Li, H. S. Su, C. H. Chang, H. H. Lu, P. Y. Wu, C. Y. Chen, and C. L. Ying, “Generation and transmission of BB/MW/MMW signals by cascading PM and MZM,” IEEE/OSA J. Lightw. Technol. 30(3), 298-303, 2012.
[30]C. Y. Li, H. S. Su, C. Y. Chen, H. H. Lu, H. W. Chen, C. H. Chang, and C. H. Jiang, “Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals,” Opt. Express 19(15),14000-14007, 2011.
[31]C. W. Chow and Y. H. Lin, “Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation,” Opt. Express 20(8), 9243-9248, 2012.
[32]C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867-868, 2011.
[33]F. Alsaadi and J. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas. Commun. 27(8), 1507-1519, 2009.
[34]J. Fadlullah and M. Kavehrad, “Indoor high-bandwidth optical wireless links for sensor networks,” IEEE /OSA J. Lightwave Technol. 28(21), 3086-3094, 2010.
[35]H. H. Lu, S. J. Tzeng, and Y. L. Liu, “Intermodulation distortion suppression in a full-duplex radio-on-fiber ring network,” IEEE Photon. Technol. Lett. 16(2), 602-604, 2004.
[36]M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett. 12(8), 1094-1096, 2000.
[37]M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonliearities in WDM CATV lightwave systems,” IEEE /OSA J. Lightwave Technol. 17(10), 1782-1792, 1999.
[38]K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Advances in Opt. Technol. 2012, 569379, 2012.
[39]P. C. Peng, C. H. Chang, H. H. Lu, Y. T. Lin, J. W. Sun, and C. H. Jiang, “Novel optical add-drop multiplexer for wavelength-division-multiplexing networks,” Opt. Commun. 285, 3093, 2012.
[40]Y. C. Chi, H. Y. Wang, P. C. Peng. H. H. Lu, and G. R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071, 2012.
[41]J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA J. Lightwave Technol. 30, 3946, 2012.
[42]H. Henniger, and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19, 203, 2010.
[43]H. T. Lin, C. L. Lai, and Y. C. Huang, “Dynamic bandwidth allocation with QoS support for integrated EPON/WiMAX networks,” IEEE 14th International Conf. on High Performance Switching and Routing (HPSR), 74-79, 2013.
[44]N. Cvijetic, and T. Wang, “WiMAX over free-space optics - evaluating OFDM multi-subcarrier modulation in optical wireless channels,” IEEE Sarnoff Symposium, 1-4, 2006.
[45]S. I. Chakchai, R. Jain, and A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. on Selected Areas in Commun. 27(2), 156-171, 2009.
[46]W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, , pp. 113-115, Academic, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top