跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:浦士杰
研究生(外文):Shih-Chieh Pu
論文名稱:一、激發態質子與電子轉移偶和反應的光譜和飛秒動力學二、近紅外光區的螢光抑制劑-Azulenylocyanine染料的光物理現象三、II-VI族半導體量子點的載子鬆弛動力學和雙光子吸收截面積與大小的關係
論文名稱(外文):1. Spectroscopy and Femtosecond Dynamics on the Excited-State Proton/Charge Transfer Coupled Reaction2. The Photophysical Properties of the Azulenylocyanine Dye, a Near-infrared Nonfluorogenic Quencher3. Carrier Relaxation Dynamic of the II-VI Semicondu
指導教授:周必泰
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:129
中文關鍵詞:奈米飛秒超快染料硒化鎘碲化鎘質子轉移電荷轉移
外文關鍵詞:nanometerCdSeCdTeproton transfercharge transferultrafastfemtosecond
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Part I:
利用飛秒螢光和頻技術來研究ESIPT的分子是2-(2’-hydroxy-4’- dietheylaminophenyl) benzothiazole (HABT)和相關的衍生物,同樣的也是利用飛秒螢光和頻技術;而在環己烷中,2-(2’-hydroxyphenyl) benzothiazole的ESIPT速率大於35 fs-1,而HABT則相對較慢可以清楚的解析出速率為1.8 ps-1;至於在極性非質子性溶劑中,在初期動態學清楚的顯示,ESIPT正好匹配溶劑鬆弛的速率;另外當到達極性平衡後,此時發生的ESIPT會受到溶劑所造成的能壁限制,這是因為產物和生成物有著不同的極性,另外支持的證據就是2-(2’-methoxy-4’–dietheylamino -phenyl) benzothiazole (MABT),這個分子由於被甲基化,所以不會發生ESIPT。基本上,N*的狀態在能量上是有利於ESIPT,在速率上,則跟溶劑的鬆弛速率競爭,在CH3CN這種極性很高的溶劑中,N*和T*的平衡分佈相對於低度極性的溶劑會受到很大的改變,而從實驗結果得知,不同溶劑下平衡比例,分別是Cyclohexane:CH2Cl2:CH3CN為23.5:4.71:0.57,而從變溫的實驗得知,在CH2Cl2溶劑下,溶劑引發的能量障壁大約為1.88 kcal/mol,而室溫下的ESIPT速率為6.8 ps-1,藉此讓我們對ESICT/ESIPT的偶和反應有更進一步的認識。

Part II:
有關AC的系統從合成以來,就一直有許多的科學家在研究其光物理的機制,但是AC似乎跟azulene不太相同,在溶劑中azulene違背了Kasha規則,除了S1→S0放光以外,還有直接從S2→S0放光。而AC在任何溶劑中,雖然有很高的吸收係數,但不放光(Φf < 10-6);在飛秒螢光和頻與瞬態吸收光譜的實驗中,以及結合TDDFT的理論計算下,發現最低的S0→S1躍遷狀態基本上被禁止的,因此當760奈米波長的吸收,應該是S0→Sn的躍遷!從實驗中,發現到從Sn→S1能態的內部轉換約小於130 飛秒,而輻射衰退的速率大於233 ns,因為這是有一個約710 ± 70 fs的非輻射的鬆弛機制!

Part III:
主要是藉由飛秒螢光和頻技術來研究這兩種不同電子/電洞鬆弛方式的type-II量子點。首先是CdSe/ZnTe量子點,從光譜和飛秒動態測量的結果得知,光導致的電子核電洞在空間分離的速率,正好跟核大小的增加成反比,而跟殼的厚度無關,這個結果正符合CdSe的核心裡面電子與電洞的結合強度。至於另外一種形式的type-II量子點CdTe/CdSe,同樣的放光主要也是在IR區域,從飛秒螢光和頻測量的結果得知,當CdTe/CdSe的直徑從6.0、6.7增加到7.4 nm時,由光引發的電子轉移速率從510、690減少到930 fs-1,而且也跟殼層的厚度無關,在量測螢光時也發現到6.7 nm (核)/2.2 nm (殼)的CdTe/CdSe的量子點,聲子振動的頻率大約是12 cm-1,這種有限速率的電子分離機制,說明是電子與聲子的偶和效應相當的低。從上面這些研究成果,可以讓我們知道這種量子點的電子與電洞結合不同大小,以及載子在空間上分離速率的解析,正好可以配合太陽能電池中電荷在基質上的轉移,這一方面的研究。

還有就是由於量子點的雙光子吸收數值非常的大,遠大過目前所有的有機分子,按照理論預測,可能會高達50000GM,因此一直受到許多研究人員的注目,並希望能應用到生物醫學研究的雙光子顯微技術上,但是有關這一方面理論研究非常的缺乏,而我們研究的主題是集中在是否量子點會隨著體積大小,對於雙光子的吸收截面積有顯著的改變。從實驗結果清楚的得知,隨著量子點的體積增加,的確雙光子吸收截面積也隨之增加,似乎跟體積成正比(半徑的三次方)。
Part I:
Detailed insights into the excited state intramolecular proton transfer (ESIPT) reaction in
2-(2’-hydroxy-4’-dietheylaminophenyl) benzothiazole (HABT) have been investigated via
steady state and femtosecond fluorescence up-conversion approaches. In cyclohexane, in
contrast to the ultrafast rate of ESIPT for the parent 2-(2’-hydroxyphenyl) benzothiazole (> 35
fs-1), HABT undergoes a resolvable, relatively slow rate (~1.8 ps-1) of ESIPT. In polar, aprotic
solvents competitive rate of proton transfer and rate of solvent relaxation was resolved in the
early dynamics. After reaching the equilibrium polarization in the normal state (N*), ESIPT
takes place, associated with a solvent induced barrier due to different polarization equilibrium
between normal (N*) and tautomer (T*) states. Supplementary support was also rendered via
the study of 2-(2’-methoxy-4’-dietheylaminophenyl) benzothiazole (MABT), in which ESIPT
is prohibited due to the lack of hydroxyl proton. The results are rationalized by a similar
dipolar character between N and T* species, whereas due to the charge transfer effect N*
possesses an appreciable dipolar change with respect to both N and T*. ESIPT is thus
energetically favorable at the Franck-Condon excited N*, and its rate is competitive with
respect to the solvation relaxation process. In CH3CN, due to the strong solvent stabilization
there exists an equilibrium between N* and T* states in e.g. CH2Cl2, and both forward and
reversed ESIPT dynamics are associated with a solvent induced barrier due to different
polarization equilibrium between N* and T*. The N* ↔ T* equilibrium constant was
sdeduced to be 24.5, 4.71 and 0.57 in cyclohexane, CH2Cl2 and CH3CN, respectively.
Temperature dependent relaxation dynamics further resolved a solvent induced barrier of 1.88
kcal/mol with a rate of 6.8 ps-1 at 298 K for the forward reaction in CH2Cl2.
Part II:
A Azulenylocyanine dye (AC) has been synthesized to investigate its associated
photophysical properties. AC is essentially nonluminescent (Φf < 10-6) in any solvents despite
its very high absorption extinction coefficient (760 nm, ε ~ 8.2×104 M-1cm-1 in methanol).
Femtosecond fluorescence upconversion, anisotropy kinetics and transient absorption
experiments, in combination with the theoretical TDDFT approach, lead us to conclude that
the lowest S0 → S1 transition is partial optically forbidden in character, while the 760 nm
absorption is ascribed to the fully allowed S0 → Sn (n ≥ 2) transition. The observed <130 fs
decay component is attributed to the Sn → S1 internal conversion, while the S1 → S0, with a
much slower radiative decay time (> 233 ns) undergoes a dominant radiationless deactivation
7
process (710 ± 70 fs) possibly governed by strong interaction between S1 and S0 potential
energy surfaces.
Part III:
CdSe/ZnTe and CdTe/CdSe type-II quantum dots (QDs) are characterized in near-IR
interband emission. Spectroscopic and femtosecond dynamic measurements reveal that the
rate of photoinduced electron/hole spatial separation decreases with increases in the size of
the core, and is independent of the thickness of the shell in the CdSe/ZnTe QDs. The results
are consistent with the binding strength of the electron and hole confined at the center of
CdSe. So far as CdTe/CdSe is concerned, the femtosecond fluorescence upconversion
measurements on the relaxation dynamics of the CdTe core emission and CdTe/CdSe
interband emission reveal that as the size of the core increases from 5.3, 6.1 to 6.9 nm, the rate
of photoinduced electron separation decreases from 510, 690 to 930 fs. The finite rates of the
initial charge separation are tentatively rationalized by the low electron-phonon coupling,
causing small coupling between the initial and charge-separated states. The correlation
between the core/shell size and the electron/hole spatial separation rate resolved in this study
may provide valuable information for applications where rapid photoinduced carrier
separation followed by charge transfer into a matrix or electrode is crucial, such as in
photovoltaic devices.
Tuning CdSe quantum dots (QDs) sizes and consequently their corresponding two-photon
absorption (TPA) cross section have been systematically investigated. As increasing the size
(diameter) of the quantum dots, the TPA cross section was found to be dependent on a 3.5 ±
0.5 and 5.6 ± 0.7 and 5.4 power of CdSe and CdTe QDs diameters, respectively. TPA cross
section was measured to be as high as 1.0 × 10-46 cm4•s photon-1(104 GM) for CdSe QDs with
a diameter of 4.8 nm. The results are rationalized on theoretical levels incorporating both
one-photon and two-photon excitation properties on an exciton system.
中文摘要 ………………………………………………………………4
英文摘要 ………………………………………………………………6

Part I
Chapter 1. Introduction of excited state proton transfer reaction.
1. Intramolecular type …………………………………10
2. Solvent Polarity coupled proton transfer reaction……14
3. References …………………………………………20
Figures …………………………………………24

Chapter 2. Spectroscopy and Femtosecond Dynamics on the Excited-State Proton/Charge Transfer Reaction in 2-(2’-Hydroxy-4’-dietheylamino-phenyl) benzothiazole.
Abstract ……………………………………………………………26
1. Introduction ……………………………………………………28
2. Experimental section …………………………………………30
3. Results …………………………………………………………32
a. Steady state approaches …………………………………32
b. Relaxation dynamics of MABT ……………………………34
c. Femtosecond dynamics of HABT ……………………………35
4. Discussion ……………………………………………………36
a. The kinetics/thermodynamics parameters …………… 36
b. The proposed mechanism …………………………………40
c. Theoretical support ………………………………………40
5. Conclusion ……………………………………………………41
Table, Schemes and Figures ………………………………43

Chapter 3. References ……………………………………………56

Part II
Chapter 1. The Photophysical Properties of the Azulenylocyanine Dye, a Near- infrared Nonfluorogenic Quencher.
Abstract …………………………………………………………62
1. Introduction ……………………………………………………64
2. Experimental section ………………………………………64
3. Results and discussion ………………………………………66
4. Conclusion ……………………………………………………71
Table, Schemes and Figures ………………………………73

Chapter 2. References …………………………………………80

Part III
Chapter 1. Spectroscopy and femtosecond dynamic of Type II CdSe/ZnTe and CdTe/CdSe core-shell QDs.
Abstract ……………………………………………………………84
1. Introduction …………………………………………………86
2. Experimental Section ………………………………………86
3. Results and Discussion ………………………………………87
a. Steady state …………………………………………………87
b. Femtosecond dynamic of Type II CdSe/ZnTe core-shell QDs ………………91
c. Femtosecond dynamic of Type II CdTe/CdSe core-shell QDs ………………93
4. Conclusion ……………………………………………………96
Table and Figures ………………………………………………98

Chapter 2. The Empirical Correlation between Size and Two-photon Absorption Cross Section on CdSe and CdTe Quantum Dots.
Abstract …………………………………………………………108
1. Introduction ……………………………………………………109
2. Experimental Section …………………………………110
3. Results and discussion ……………………………………111
4. Conclusion ……………………………………………………119
Table and Figures ……………………………………………121

Chapter 3. References …………………………………………127
part I :
(1). Martinez, M. L.; Cooper, W. C.; Chou, P. T. Chem. Phys. Lett. 1992, 193 (1-3), 151.
(2). Chou, P. -T.; Martinez, M. L. Radiat. Phys. Chem. 1993, 41, 373.
(3). Sytnik, A.; Gormin, D.; Kasha, M. Proc. Natl. Acad. Sci. USA 1994, 91, 11968.
(4). Sytnik, A.; Del Valle, J. C. J. Phys. Chem. 1995, 99, 13028.
(5). Roberts, E. L.; Chou, P. T.; Alexander, T. A.; Agbaria, R. A.; Warner, I. M. J. Phys. Chem. 1995, 99, 5431.
(6). Chou, P. -T.; Wei, C. Y. J. Phys. Chem. 1996, 100, 17059.
(7). Chou, P.-T.; Chen, Y.-C.; Yu, W.-S.; Chou, Y.-H.; Wei, C.-Y.; Cheng, Y.-M. J. Phys. Chem. A 2001, 105, 1731.
(8). (a) Jamorski, C.; Casida, M. E.; Salahub, D. R. J. Chem. Phys. 1996, 104, 5134. (b) Petersilka, M.; Grossmann, U. J.; Gross, E. K. U. Phys. Rev. Lett. 1996, 76, 1212. (c) Bauernschmitt, R.; Ahlrichs, R.; Hennrich, F. H.; Kappes, M. M. J. Am. Chem. Soc. 1998, 120, 5052. (d) Casida, M. E. J. Chem. Phys. 1998, 108, 4439. (e) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218.
(9). (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(10). Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.
(11). Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
(12). Fiebig, T.; Chachisvillis, M.; Manger, M.; Zewail, A. H.; Douhal, A.; Garcia Ochoa, I.; de La Hoz Ayuso, A. J. Phys. Chem. A. 1999, 103, 7419.
(13). Chudoba, C.; Riedle, E.; Pfeiffer, M.; Elsaesser, T. Chem. Phys. Lett. 1996, 263, 622.
(14). Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Chem. Phys. 2000, 112, 10699.
(15). In general, it is difficult to distinguish the mechanism between proton transfer and hydrogen atom transfer reactions. In this review article we simply adopted the conventional term namely "proton transfer" throughout the text, which is particularly more suitable in describing the solvent polarity coupled proton-transfer tautomerism.
(16). For example, see: Studies in Physical and Theoretical Chemistry; Müller, A., Ratajack, H., Junge, W., Diemann, E., Eds.; Electron and Proton Transfer in Chemistry and Biology, Vol. 78; Elsevier: Amsterdam, The Netherlands, 1992.
(17). (a) Scheiner, S. J. Phys. Chem. A, 2000, 104, 5898. (b) Waluk, J. Conformational Aspects of Intra- and Intermolecular Excited-State Proton Transfer. In Conformational Analysis of Molecules in Excited States; Waluk, J., Ed.; Wiley-VCH: New York, 2000. (c) Chou, P. T. J. Chin. Chem. Soc., 2001, 48, 651. (d) Wu, K.-C.; Cheng, Y.-M.; Lin, Y.-S.; Yeh, Y.-S.; Pu, S.-C.; Hu, Y.-H.; Yu, J.-K.; Chou, P.-T. Chem. Phys. Lett., 2004, 382, 203. (e) Paterson, M. J.; Robb, M. A.; Blancafort, L.; DeBellis, A. D. J. Am. Chem. Soc., 2004, 126, 2912. (f) Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Phys. Chem. A, 2003, 107, 10580. (g) de Vivie-Riedle, R.; De Waele, V.; Kurtz, L.; Riedle, E. J. Phys. Chem. A, 2003, 107, 10591. (h) Cheng, C.-C.; Chang, C.-P.; Yu, W.-S.; Hung, F.-T.; Liu, Y.-I.; Wu, G.-R.; Chou, P.-T. J. Phys. Chem. A , 2003, 107, 1459 . (i) Lukeman, M.; Wan, P. J. Am. Chem. Soc., 2003, 125, 1164.
(18). In some ESIPT molecules, the lowest excited singlet state is in an n * configuration, in which ESIPT is prohibited.
(19). ESIPT incorporating phenol O-H to a β-carbon atom is not included in this category, see: Lukeman, M.; Wan, P. J. Am. Chem. Soc., 2002, 124, 9458.
(20). Lochbrunner, S.; Wurzer, A. J.; Riedle, E. J. Chem. Phys., 2000, 112, 10699.
(21). Shynkar, V. V.; Mély, Y.; Duportail, G.; Piémont, E.; Klymchenko, A. S.; Demchenko, A. P. J. Phys. Chem. A 2003, 107, 9522.
(22). Roshal, A. D.; Organero, J. A.; Douhal, A. Chem. Phys. Lett. 2003, 379, 53.
(23). Douhal, A.; Sanz, M.; Carranza, M. A.; Organero, J. A.; Santos, L. Chem. Phys. Lett. 2004, 394, 54.
(24). Foggi, P.; Bussotti, L.; Neuwahl, F. V. R.; Ameer-Beg, S.; Ormson, S. M.; Poteau X.; Brown, R.G. J. Phys. Chem. A 2004, 108, 6938.
(25). (a) Chou, P.-T.; Martinez, M. L.; Clements, J. H. J. Phys. Chem. 1993, 97, 2618. (b) Chou, P.-T.; Martinez, M. L.; Clements, J. H. Chem. Phys. Lett. 1993, 204, 395.
(26). (a) Swinney, T. C. ; Kelley, D. F. J. Chem. Phys. 1993, 99, 211. (b) Parsapour, F.; Kelley, D. F. J. Phys. Chem. 1996, 100, 2791.
(27). Ormson, S. M.; Brown, R. G.; Vollmer, F.; Rettig, W. J. Photochem. Photobiol. A 1994, 81, 65.
(28). Chou, P.-T.; Huang, C.-H.; Pu, S.-C.; Cheng, Y.-M.; Liu, Y.-H.; Wang, Y.; Chen, C.-T. J. Phys. Chem. A 2004, 108, 6452
(29). Chou, P.-T.; Yu, W.-S.; Cheng, Y.-M.; Pu, S.-C.; Yu, Y.-C.; Lin, Y.-C.; Huang, C.-H.; Chen, C.-T. J. Phys. Chem. A 2004, 108, 6487.
(30). Chou, P-T; Pu, S-C; Cheng, Y-M; Yu, W-S; Yu, Y-C; Hung, F-T and Hu, W-P. J. Phys. Chem. A [submitted for publication]
(31). Frey, W.; Laermer, F.; Elsaesser, T. J. Phys. Chem. 1991, 95, 10391
(32).Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G. F.; Manik L. Debnath, M. L.; Klunk, W. E. J. Med. Chem., 2003, 46, 2740.
(33). Kun-Chan Wu, Yi-Ming Cheng, Yu-Shan Lin, Yu-Shan Yeh, Shih-Chieh Pu, Ya-Hui Hu, Jen-Kan Yu, Pi-Tai Chou Chem. Phys. Lett., 2004, 384, 203–209.
(34). Mataga, N.; Kubota, T. Molecular Interactions and ElectronicSpectra; Marcel Dekker: New York, 1970; p 385.
(35). (a)Lenoble, C.; R. S. Becker Photochem. Photobiol. 1990, 52, 1063. (b) Chou, P.-T.; Martinez, M. L. Photochem. Photobiol. 1993, 53, 593.
(36). Lochbrunner, S.; Wurzer, A. J. Riedle, E. J. Phys. Chem. A. 2003, 107, 49.
(37). Laermer, F.; Elsaesser, T.; Kaiser, W. Chem. Phys. Lett., 1988, 148(2-3), 119-24
(38). Iwata, K.; Ozawa, R.; Hamaguchi, H. J. Phys. Chem. A 2001, 105, 3709.

Part II :

(1). Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer, New York, 1999.
(2). Mitchell, P. Nat. Biotechnol. 2001 19, 1013.
(3). Sokol, D. L.; Zhang, X.; Lu, P.; Gewirtz, A. M. Proc. Natl. Acad. Sci. USA 1998, 95 11538.
(4). Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1998, 14 303.
(5). Harris, J. L.; Alper, P. B.; Li, J.; Rechsteiner, M.; Backes, B. J. Chem. Biol. 2001, 8, 1131.
(6). Zlokarnik, G.; Negulescu, P. A.; Knapp, T. E.; Mere, L.; Burres, N.; Feng, L.; Whitney, M.; Roemer, K.; Tsien, R. Y. Science 1998, 279, 84.
(7). Zaccolo, M.; De Giorgi, F.; Cho, C. Y.; Feng, L.; Knapp, T.; Negulescu, P. A.; Taylor, S. S.; Tsien, R. Y.; Pozzan, T. Nat. Cell Biol. 2000, 2, 25.
(8). Zaccolo, M.; Pozzan, T. IUBMB Life 2000, 49 375.
(9). Wang, G. T.; Matayoshi, E.; Huffaker, H. J.; Krafft, G. A. Tetrahedron Lett. 1990, 31, 6493.
(10). Beaucage, S. L. Curr. Med. Chem. 2001, 8, 1213.
(11). Chan, W. C.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Curr. Opin. Biotechnol. 2002, 13, 40.
(12). Klein, P. E.; Klein, R. R.; Cartinhour, S. W.; Ulanch, P. E. Dong, J.; Obert, J. A.; Morishige, D. T.; Schlueter, S. D.; Childs, K. L.; Ale, M.; Mullet, J. E. Genome Res. 2000, 10, 789.
(13). Tong, A. K.; Li, Z.; Jones, G. S.; Russo, J. J.; Ju, J. Nat. Biotechnol. 2001, 19, 756.
(14). Weissleder, R.; Tung, C.-H.; Mahmood, U.; Bogdanov, A. Nat. Biotechnol. 1999, 17, 375.
(15). Tung, C.-H.; Bredow, S.; Mahmood, U.; Weissleder, R. Bioconjugate Chem. 1999, 10, 892.
(16). Bremer, C.; Bredow, S.; Mahmood, U.; Weissleder, R.; Tung, C.-H. Radiology 2001, 221, 523.
(17). Tung, C.-H.; Mahmood, U.; Bredow, S.; Weissleder, R. Cancer Res. 2000, 60, 4953.
(18). Marten, K.; Bremer, C.; Khazaie, K.; Sameni, M.; Sloane, B.; Tung, C.-H.; Weissleder, R. Gastroenterology 2002, 122, 406.
(19). Bremer, C.; Tung, C.-H.; Weissleder, R.; Nat. Med. 2001, 7, 743.
(20). Licha, K.; Hessenius, C.; Becker, A.; Henklein, P.; Bauer, M.; Wisniewski, S.; Wiedenmann, B.; Semmler, W. Bioconjugate Chem. 2001, 12, 44.
(21). Achilefu, S.; Dorshow, R. B.; Bugaj, J. E.; Rajagopalan, R. Invest. Radiol. 2000, 35, 479.
(22). Pham, W.; Weissleder, R.; Tung, C.-H.; Angew. Chem. Int. Ed. 2002, 41, 3659.
(23). Pham, W.; Weissleder, R.; Tung, C.-H. Tetrahedron Lett. 2002, 43, 19.
(24). Chou, P. T.; Yu, W. S.; Cheng, Y. M.; Pu, S. C.; Yu, Y. C.; Lin, Y. C.; Huang, C. H.; Chen, C. T. J. Phys. Chem. A. 2004, 108, 6487.
(25). Jarzeba, W.; Walker, G. C.; Johnson, M. A.; Barbara, P. F. J. Phys. Chem 1988, 92, 7039.
(26). Barbara, P. F.; Jarzeba, W.; Advances in Photochemistry 1990, 15, 1.
(27).Anestopoulos, D.; Fakis, M.; I. Polyzos, Tsigaridas, G.; Persephonis, P.; Giannetas, V. J. Phys. Chem. B. 2005, 109, 9476.
(28). Elsaesser, T.; Kaiser, W. Ann. Rev. Phys. Chem. 1991, 42, 83.
(29). Chou, P. T.; Chen, Y. C.; Chen, S. J.; Lee, M. J.; Wei, C. Y.; Wen, T. C. J. Chin. Chem. Soc. 1998, 45, 503.
(30). Liu, J.-Y.; Fan, W.-H.; Han, K.-L.; Deng, W.-Q.; Xu, D.-L.; Lou, N.-Q. J. Phys. Chem. A. 2003, 107, 10857.
(31). Strickler, S. J.; Berg, R. A.; J. Chem. Phys. 1962, 37, 814.
(32). Chen, H.-Y.; Chi, Y.; Liu, C.-S.; Yu, J.-K.; Cheng, Y.-M.; Chen, K.-S.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Carty, A. J.; Yeh, S.-J.; Chen, C.-T. Adv. Funct. Mater. 2005, 15, 567.
(33). Turro, N. J.; Modern Molecular Photochemistry; Benjamin: Menlo Park, 1978; p 170.
(34). Ippen, E. P.; Shank, C. V.; Woerner, R. L. Chem. Phys. Lett. 1977, 46, 20.
(35). Tomiyama, T.; Yokota, M.; Wakabayashi, S.; Kosakai, K.; Yanagisawa, T. J. Med. Chem. 1993, 36, 791.
(36). Ito, S.; Fujita, M.; Morita, N.; Asao, T. Bull. Chem. Soc. Jpn. 1995, 68, 3611.
(37). Chen, S. L.; Klein, R.; Hafner, K. Eur. J. Org. Chem. 1998, 423.
(38). Ito, S.; Morita, N.; Asao, T. Bull. Chem. Soc. Jpn. 1999, 72, 2543.


Part III :
(1) Brus, L. E. J. Phys. Chem. 1986, 90, 2555.
(2) Alivisatos, A. P. Science 1996, 271, 933.
(3) Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G. Chem. Mater. 1996, 8, 173.
(4) Nirmal, M.; Brus, L. E. Acc. Chem. Res. 1999, 32, 407.
(5) Mattoussi, H.; Mauro, J. M.; Goodman, E.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142.
(6) Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207.
(7) Reiss, P.; Bleuse, J.; Pron, A. Nano Lett. 2002, 2, 781.
(8) Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. G. J. Am. Chem. Soc. 2003, 125, 11466.
(9). L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, V. I. Klimov, Nano Lett. 2004, 4, 1485.
(10). S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2004, 22, 93.
(11). Hatami, F.; Grundmann, M.; Ledentsov, N. N.; Heinrichsdorff, F.; Heitz, R.; Böhrer, J.; Bimberg, D.; Ruvimov, S. S.; Werner, P.; Ustinov, V. M.; Kop’ev, P. S.; Alferov, Z. I. Phys. Rev. B 1998, 57, 4635.
(12). Youn, H. C.; Baral, S.; Fendler, J. H. J. Phys. Chem. 1998, 92, 6320.
(13). Chikan, V.; Kelley, D. F. Nano Lett. 2002, 2, 141.
(14). Chikan, V.; Kelley, D. F. Nano Lett. 2002, 2, 1015.
(15). Tu, H.; Chikan, V.; Kelley, D. F. J. Phys. Chem. B 2003, 107, 10389.
(16). Woggon, U.; Geissen, H.; Gindele, F.; Wind, O.; Fluegel, B.; Peyghambarian, N. Phys. Rev. B 1996, 54, 17681.
(17). Klimov, V. I.; McBranch, D. W. Phys. Rev. Lett. 1998, 80, 4028.
(18). Guyot-Sionnest, P.; Shim, M.; Matranga, C.; Hines, M. Phys. Rev. B 1999, 60, R2181.
(19). Klimov, V. I.; Schwarz, C. J.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Phys. Rev. B 1999, 60, R2177.
(20). Klimov, V. I.; Milhailosky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Phys. Rev. B 2000, 61, R13349.
(21). Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. J. Phys. Chem. B 2001, 105, 436.
(22). Burda, C.; Link, S.; Mohamed, M.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 12286.
(23). Seybold, P. G.; Gouterman, M. J. Mol. Spectrosc. 1969, 31, 1.
(24). Lee, E. H.; Stoltz, S.; Chang, H. C.; Na, M. H.; Luo, H.; Petrou, A. Solid State Commun. 1998, 107, 177.
(25). Haetty, J.; Lee, E. H.; Luo, H.; Petrou, A.; Warnock, J. Solid State Commun. 1998, 108, 205.
(26). Bockelmann, U.; Bastard, G. Phys. Rev. B 1990, 42, 8947
(27). Benisty, H.; Sotomayor-Torres, C.; Weisbuch, C. Phys. Rev. B 1991, 44, 10945.
(28). E. H. Lee, S. Stoltz, H. C. Chang, M. H. Na, H. Luo, A. Petrou, Solid State Commun. 1998, 107, 177.
(29). S. K. Haram, B. M. Quinn, A. J. Bard, J. Am. Chem. Soc. 2001, 123, 8860.
(30) M. Goppert-Mayer, Ann. Phys., Lpz, 1931, 9, 273.
(31) W. L. Peticolas, Annu. Rev. Phys. Chem. 1967, 18, 233.
(32) J. D. Bhawalkar, G. S. He, P. N. Prasad, Rep. Prog. Phys. 1996, 59, 1041.
(33) W. Denk, J. H. Stricker, W. W. Webb, Science 1990, 248, 73.
(34) C. W. Spangler, J. Mater. Chem. 1999, 9, 2013.
(35) Sean, A. B.; Ahmad, D. ; Philippe, G-S.;. Chem. Phys. Lett. 1994, 229, 317.
(36) Daniel, R.L.;Warren, R. Z.; Rebecca, M. W.; Frank, W. W.; Watt, W.W.; Science 2003, 300, 1434
(37) Willets, K. A.; Nishimura, S. Y.; Schuck, P. J.; Twieg, R. J.; Moerner, W. E.; Acc. Chem. Res. 2005 38, 549.
(38) Tayloe, J. R.; Nie, S.; Advances in Biomechanics 2001, 11
(39) Lukomska, J.; Gryczynski, I.; Malicka, J.; Makowiecz, S.; Lakowicz, J.; Gryczinski, Z.; Biochemical & Biophysical Research Communications 2005 328, 78.
(40) Mark, E. S.; Sean, A. B.; Margaret A. H.;. ; Philippe, G-S.; Phys. Rev. B 1996, 53, 12 629
(41) Padilha, L. A.; Fu, J.; Hagan, D. J.; Van Stryland, E. W.; Cesar, C. L.; Barbosa, L. C.; Cruz, H. B.; Optics Express 2005 13, 6460.
(42) Alivisatos, A. P. Science 1996, 271, 933.
(43) Alivisatos, A. P. Science 2001, 291, 2115.
(44) Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
(45) Yu, W. W.; Peng, X. Angew. Chem., Int. Ed. 2002, 41, 2368.
(46) Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049.
(47) Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333.
(48) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
(49) Huang, G. W.; Chen, C. Y.; Wu, K. C.; Ahmed, M. O.; Chou, P.T. J. Crystal Growth. 2004, 265, 250.
(50) Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481.
(51) Albota, M. A.; Xu, C.; Webb, W. W. Appl. Opt. 1998, 37, 7352.
(52) Chang, R.; Hsu, J.-H.; Fann, W.-S.; Liang, K. K.; Chiang, C. H.; Hayashi, M.; Yu, J.; Lin, S. H.; Chang, E. C.; Chuang, K. R. and Chen, S. A., Chem. Phys. Lett. 2000, 317, 142,
(53) Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G.. J. Phys. Chem. B 2002, 106, 7619
(54) Schmelz, O.; Mews, A.; Basché, T.; Herrmann, A.; Müllen, K. Langmuir 2001, 17, 2861.
(55) Striolo, A.; Ward, J.; Prausnitz, J. M.; Parak, W. J.; Zanchet, D.; Gerion, D.; Milliron, D.; Alivisatos, A. P. J. Phys. Chem. B 2002, 106, 5500.
(56) Shen, Y. R. The Principles of Nonlinear Optics (Wiley, New York, 1984).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張苙雲、謝幸燕,1994,〈醫療資源的成長與分佈:制度面成因的思考〉,《人口學刊》,16:29-45。
2. 張苙雲、朱永昌,1994,《組織場域的浮現—台灣醫療產業的研究》,中央研究院民族學研究所集刊,77:157-192。
3. 張其祿,2003,〈美國醫療證照管制政策之政治經濟分析〉,《歐美研究》,33(1):1-56。
4. 徐斯勤,2001,〈新制度主義與當代中國政治研究--理論與應用之間對話的初步觀察〉,《政治學報》,32:95-170。
5. 孫煒,2003a,〈比較政策研究的新制度研究途徑:兩岸高等教育政策之初步比較〉,《問題與研究》,42(1):19-45。
6. 孫煒,2000,〈中國大陸經濟轉型之制度分析:方法論的觀點〉,《理論與政策》,14(2):29-53。
7. 范燕秋,1995,〈日治前期臺灣公共衛生之形成(1895-1920):一種制度面觀察〉,《思與言》,33(2):215-258。
8. 南方朔,2005,〈醒醒吧!知識分子〉,《新新聞》,972:62。
9. 林國明、陳東升,2003c,〈台灣的醫療體系、民眾行為與SARS疫情〉,《當代》,109:60-79。
10. 林國明、陳東升,2003b,〈台灣的醫療體系、民眾行為與SARS疫情〉,《當代》,72:60-64。
11. 李碧涵,1985,〈十年來的社會發展與經濟問題〉,論文收錄於《中國論壇》,242:10-19。
12. 呂育誠,2002,〈台灣地方政府組織革新的變與不變:歷史制度主義的觀點〉,《中國行政》,72:83-108。
13. 吳嘉苓、曾嬿芬,2004,〈「看見」病毒:流動、隔離與邊界〉,《傳播研究簡訊》,37:8-10。
14. 張淑雅,1995,〈金馬撤軍?美國應付第一次台海危機策略之二〉,《中央研究院近代史研究所集刊》,24(上):411-472。
15. 梁妃儀、蔡篤堅,2002,〈臺灣撲瘧經驗所展現的醫學倫理新貌〉,《應用倫理研究通訊》,24:6-9。