|
Asuncion, A. and Newman, D.J. (2007). UCI machine learning repository http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of California, School of Information and Computer Science.
Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning, Proceedings of the 9th European Conference on Artificial Intelligence, Stockholm, Sweden, 147-150.
Clark, P. and Niblett, T. (1989). The CN2 induction algorithm, Machine Learning, 3, 261-283.
Domingos, P. and Plazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero one loss, Machine Learning, 29, 103-130.
Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised discretization of continuous features, Proceedings of the 12th International Conference on Machine Learning, San Francisco, 192-202.
Fayyad, U. M. and Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, France, 1022-1027.
Ferreira, A. and Figueiredo, M. (2011). Unsupervised joint feature discretization and selection. Pattern Recognition and Image Analysis, 6669, 200-207.
John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the subset selection problem. Proceedings of ICML-94, 11th International Conference on Machine Learning, New Bruswick, NJ, 121-129.
John, G., H., and Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 338-345.
Kerber, R. (1992). Chimerge: Discretization of numeric attributes. Proceeding of the Tenth National Conference on Artificial Intelligence, San Jose, CA, 123-128.
Kwak, N. and Choi, C. H. (2002). Input feature selection by mutual information based on Parzen window. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1667-1671.
Langley, P., Iba, W., and Thompson, K. (1992). An analysis of Bayesian classifiers, Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, 223-228.
Langley, P. and Sage, S. (1994). Induction of selective Bayesian classifiers. Proceedings of the UAI-94, 10th International Conference on Uncertainty in Artificial Intelligence, Seattle, WA, 399-406.
Li, Y., Hu, S. J., Yang, W. J., Sun, G. Z., Yao, F. W., and Yang, G. (2009). Similarity-based feature selection for learning from examples with continuous Values. Advances in Knowledge Discovery and Data Mining, Spring, 5476, 957-964.
Liu, H. and Setiono, R. (1995). Feature selection and discretization of numeric attribute. Proceedings of the 7th IEEE International Conference on Tools with Artificial Intelligence, 388-391.
Mejia-Lavalle, M., Morales, E. F., and Rodriguez, G. (2006). Fast feature selection method for continuous attributes with nominal class. Proceedings of 5th Mexican International Conference on Artificial Intelligence (MICAI'06), 142-150.
Peng, H., Long, F., and Ding, C.(2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226-1238.
Pernkopf, F. (2005). Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition, 38, 1–10.
Pudil, P., Novovicova, J., and Kittler, J. (1994). Floating search methods in feature selection, Pattern Recognition Letters, 15, 1119–1125.
Ribeiro, X. M., Traina, A. J. M., and Traina, C. Jr. (2008). A new algorithm for data discretization and feature selection. Proceedings of the 2008 ACM symposium on Applied computing, New York, USA, 953-954.
Senthilkumar, J., Mnjula, D., and Krishnamoorthy, R. (2009). NANO: A new supervised algorithm for feature selection with discretization. Proceedings of IEEE International conference on Advanced Computing (IACC 2009), Patiala, India, 1515-1520.
Wong, T. T., (2012). A hybrid discretization method for naïve Bayesian classifiers, Pattern Recognition, 45, 2321-2325.
Yang, Y. and Webb, G. I. (2009). Discretization for naive-Bayes learning: managing discretization bias and variance, Machine Learning, 74, 39-74.
Zhang, M. L., Jose, M. P., and Robles, V. (2009). Feature selection for multi-label naïve Bayes classification. Information Sciences: an International Journal, 179, 3218-3229.
|