|
1. C.P. Gupta, “Working with heat exchangers: questions and answers”, Hermisphere publishing corporation, 1990. 2. G. Hewitt, G. Shires, and Y. Polezhaev, “Spiral Heat Exchangers”, International Encyclopedia of Heat and Mass Transfer, CRC Press, pp. 1044, 1997. 3. P.I. Frank and P.D.W. David, “Fundamentals of heat and mass transfer”, 3rd edition, John Wiley & Sons, 1990. 4. W.M. Kays and A.L. London, “Compact Heat Exchanger”, 2nd edition, McGraw-Hill, 1965. 5. R.E. Sonntag, C. Borgnakke, G.J.V Wylen, “Fundamentals of thermodynamics”, 6th edition, John Wiley and Sons, 2003. 6. B. Wilhelmsson, “Consider spiral heat exchangers for fouling application”, Hydrocarbon Processing, pp. 83, 2005. 7. M. Picón-Núñez, L. Canizalez-Dávalos, G. Martínez-Rodríguez, and G.T. Polley, “Shortcut design approach for spiral heat exchangers”, Food and Bioproducts Processing, Vol. 85 (4), pp. 322-327, 2007. 8. W.D. Wu, “Geometric calculations of the spiral heat exchanger”, Chemical Engineering Technology, Vol. 26, pp. 592–598, 2003. 9. M. Picón-Núñez, L. Canizalez-Dávalos and J.M. Medina-Flores, “Alternative sizing methodology for compact heat exchangers of the spiral type”, Heat Transfer Engineering, Vol. 30 (9) , pp. 744–750, 2009. 10. M. Sterger, S. Churchill and W. Retallik, “Operational characteristics of a double-spiral heat exchanger for the catalytic incineration of contaminated air”, Industrial and Engineering Chemistry Research, Vol. 29 (9), pp.1977–1984, 1990. 11. M.J. Targett, W.B. Retallick, and S.W. Churchill, “Solutions in closed form for a double-spiral heat exchanger”, Industrial and Engineering Chemistry Research, Vol. 31, pp. 658-669, 1992. 12. P. Naphon and S. Wongwises, “An experimental study on the in-tube heat transfer coefficient in a spiral coil heat exchanger”, International Communications in Heat and Mass Transfer, Vol. 29, pp. 797-809, 2002. 13. J.C. Ho, N.E. Wijeysundera, S. Rajasekar and T.T. Chandratilleke, “Performance of a compact spiral-coil heat exchanger”, Heat Recovery Systems & CHP, Vol. 15 (5), pp. 457–468, 1995. 14. N.E. Wijeysundera, J.C. Ho and S. Rajasekar, “The effectiveness of a spiral coil heat exchanger”, International Communications in Heat and Mass Transfer, Vol. 23, pp. 623-631, 1996. 15. T.J. Rennie, V.G.S. Raghavan, “Numerical studies of a double-pipe helical heat exchanger”, Applied Thermal Engineering, Vol. 26, pp. 1266-1273, 2006. 16. T. Bes and W. Roetzel, “Thermal theory of the spiral heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 36, pp. 765–773, 1993. 17. H.A. Navarro and L.C. Gomez, “New approach for thermal performance calculation of cross-flow heat exchangers”, International Journal of Heat and Mass Transfer, Vol. 48 (18), pp. 3880-3888, 2005. 18. A.H. Navarro and L.C. Gomez, “Effectiveness-NTU computation with a mathematical model for cross-flow heat exchangers”, Brazilian Journal of Chemical Engineering, Vol. 24, pp. 509–521, 2007. 19. Y.H. Cho and H.M. Chang, “An effectiveness-NTU method for triple-passage counter-flow heat exchangers”, Journal of Mechanical Science and Technology, Vol. 7 (3), pp. 232–289, 1993. 20. L.C. Burmeister, “Effectiveness of a spiral-plate heat exchanger with equal capacitance rates”, Journal of Heat Transfer, Vol. 128, pp. 295-301, 2006. 21.J.Y. San, G.S. Lin and K.L. Pai, “Performance of serpentine heat exchanger: Part I-Effectiveness and heat transfer characteristics”, Applied Thermal Engineering, Vol. 29, pp. 3081-3087, 2009. 22. T. Bes and W. Roetzel, “Distribution of heat flux density in spiral heat exchangers”. International Journal of Heat and Mass Transfer, Vol. 35, pp. 1331–1347, 1992. 23. M. Adamski, “Heat transfer correlations and NTU number for the longitudinal flow spiral recuperators”, Applied Thermal Engineering, Vol. 29, pp. 591–596, 2009. 24. J.Y. San, W.M. Worek, Z. Lavan, “Second-law analysis of a two- dimensional regenerator”, Energy, Vol. 12, pp. 485-496, 1987. 25. P. Naphon, “Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger”, International Communications in Heat and Mass Transfer, Vol. 33, pp. 1029–1041, 2006. 26. J.Y. San and C.L. Jan, “Second-law analysis of a wet cross flow heat exchanger”, Energy, Vol. 25, pp. 939-955, 2000. 27. A. Gupta and S.K. Das, “Second law analysis of crossflow heat exchanger in the presence of axial dispersion in one fluid”, Energy, Vol. 32, pp. 664–672, 2007. 28. S. Sarangi and K. Chowdhury, “On the generation of entropy in a counterflow heat exchanger”. Cryogenics, Vol. 22, pp. 63–65, 1982. 29. J.Y. San and K.L. Pai, “Performance of a serpentine heat exchanger: Part II-Second-law efficiency”, Applied Thermal Engineering, Vol. 29, pp. 3088-3093, 2009. 30. S.Y. Wu, X.F. Yuan, Y.R. Li, L. Xiao, “Energy transfer effectiveness on heat exchanger for finite pressure drop”, Energy, Vol. 32, pp. 2110-2120, 2007. 31. D.F. Ruan, X.F Yuan, S.Y. Wu, and Y.R. Li, “Exergy effectiveness analysis of three-fluid heat exchanger”, Journal of Superconductivity and Novel Magnetism, Vol. 23 (6), pp. 1127-1131, 2010. 32. J.Y. San, “Second-law performance of heat exchangers for waste heat recovery”, Energy, Vol. 35, 2010. 33. A Bejan, “Second-law analysis in heat transfer”, Energy, Vol. 5, pp. 721-732, 1980.
|