跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮德勸
研究生(外文):Nguyen Duc Khuyen
論文名稱:一個渦捲式熱交換器之熱效率與有效功回收效率
論文名稱(外文):Heat Transfer Effectiveness and Exergy Recovery Effectiveness of a Spiral Heat Exchanger
指導教授:沈君洋
指導教授(外文):Jung-Yang San
口試委員:陳石法盧 昭 暉
口試日期:2011-06-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:98
中文關鍵詞:有效功渦捲式熱交換器熱效率有效功回收效率
外文關鍵詞:exergyspiral heat exchangerheat transfer effectivenessexergy recovery effectiveness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In the present study, a numerical method was developed to investigate the heat transfer performance of a spiral heat exchanger. In the spiral heat exchanger, two long metal strips are wound concentrically to create hot-flow channel and cold-flow channel. The flow of the two fluids through a spiral heat exchanger was considered counter-current, the hot-flow circulates counter-clockwise and the cold-flow circulates clockwise. The upper surface, lower surface and outer-most side of the spiral heat exchanger were assumed to be insulated. A heat transfer effectiveness and an exergy recovery effectiveness were defined and evaluated based on the calculated non-dimensional temperatures of the two counter-flow fluids in the heat exchanger. At small NTU value, the heat transfer effectiveness value initially increases with the NTU value; while at higher NTU values, after reaching the maximum heat transfer effectiveness, the heat transfer effectiveness value starts to slightly decrease. For a set of Nt and NTU values, the heat transfer effectiveness reaches a minimum value at C*=1.0. As the C* approaches zero or infinity, the heat transfer effectiveness would approach the maximum. Conversely, for a set of NTU, Nt, inlet temperature of hot flow and cold flow, and overall pressure drop factor values, as the C* approaches zero or infinity, the exergy recovery effectiveness of the spiral heat exchanger is at the minimum. The exergy recovery effectiveness reaches a maximum as the C* value nears 1.0. The result also shows that, at small values of Nt (Nt < 40), the heat transfer effectiveness value and the exergy recovery effectiveness value slightly increase with the Nt value; while these two values remain almost the same when the number of turns is larger than 40 turns.

Acknowledgement i
Abstract ii
Table of contents iii
List of Tables and Figures v
Nomenclature vii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Spiral heat exchanger and main applications 2
1.3 Survey of literature 4
1.4 Objective of the Thesis 12
Chapter 2 Energy Equations for a Spiral Heat Exchanger 13
2.1 Length of a Curve in Polar Coordinates 13
2.2 Length of Archimedes’ spiral in polar Coordinates 14
2.3 Geometry of a spiral heat exchanger 17
2.4 Mathematical modeling 20
2.4.1 Energy balance for hot flow 20
2.4.2 Energy balance for cold flow 22
2.4.3 Dimensionless energy equations 24
2.5 Heat transfer effectiveness of heat exchanger 28
Chapter 3 Numerical Analysis 30
3.1 The case for hot-flow capacity rate less than cold flow capacity rate 30
3.1.1 Finite-difference equations for the hot flow 30
3.1.2 Finite-difference equations for the cold flow 31
3.2 The case for hot-flow capacity rate lager than cold flow capacity rate 33
3.2.1 Finite-difference equations for the hot flow 33
3.2.2 Finite-difference equations for the cold flow 35
3.3 Computer simulation program 36
3.4 Error Analysis of numerical scheme 37
3.4.1 Equation for checking the accuracy of numerical scheme 37
3.4.2 Error analysis of numerical scheme 38
3.5 Results of heat transfer analysis 39
Chapter 4 Exergy Analysis 45
4.1 General form of exergy change rate in a flow 45
4.1.1 Concept of exergy analysis 45
4.1.2 Exergy change rate for ideal gas flow 46
4.1.3 Exergy change rate for incompressible flow 47
4.1.4 General form of exergy change rate in a flow 48
4.2 Exergy analysis for the spiral heat exchanger 49
4.3 Exergy recovery effectiveness 50
4.4 Dimensionless exergy recovery effectiveness equations 56
4.4 Results of exergy analysis and discussion 57
Chapter 5 Conclusions 61
References 63



1. C.P. Gupta, “Working with heat exchangers: questions and answers”, Hermisphere publishing corporation, 1990.
2. G. Hewitt, G. Shires, and Y. Polezhaev, “Spiral Heat Exchangers”, International Encyclopedia of Heat and Mass Transfer, CRC Press, pp. 1044, 1997.
3. P.I. Frank and P.D.W. David, “Fundamentals of heat and mass transfer”, 3rd edition, John Wiley & Sons, 1990.
4. W.M. Kays and A.L. London, “Compact Heat Exchanger”, 2nd edition, McGraw-Hill, 1965.
5. R.E. Sonntag, C. Borgnakke, G.J.V Wylen, “Fundamentals of thermodynamics”, 6th edition, John Wiley and Sons, 2003.
6. B. Wilhelmsson, “Consider spiral heat exchangers for fouling application”, Hydrocarbon Processing, pp. 83, 2005.
7. M. Picón-Núñez, L. Canizalez-Dávalos, G. Martínez-Rodríguez, and G.T. Polley, “Shortcut design approach for spiral heat exchangers”, Food and Bioproducts Processing, Vol. 85 (4), pp. 322-327, 2007.
8. W.D. Wu, “Geometric calculations of the spiral heat exchanger”, Chemical Engineering Technology, Vol. 26, pp. 592–598, 2003.
9. M. Picón-Núñez, L. Canizalez-Dávalos and J.M. Medina-Flores, “Alternative sizing methodology for compact heat exchangers of the spiral type”, Heat Transfer Engineering, Vol. 30 (9) , pp. 744–750, 2009.
10. M. Sterger, S. Churchill and W. Retallik, “Operational characteristics of a double-spiral heat exchanger for the catalytic incineration of contaminated air”, Industrial and Engineering Chemistry Research, Vol. 29 (9), pp.1977–1984, 1990.
11. M.J. Targett, W.B. Retallick, and S.W. Churchill, “Solutions in closed form for a double-spiral heat exchanger”, Industrial and Engineering Chemistry Research, Vol. 31, pp. 658-669, 1992.
12. P. Naphon and S. Wongwises, “An experimental study on the in-tube heat transfer coefficient in a spiral coil heat exchanger”, International Communications in Heat and Mass Transfer, Vol. 29, pp. 797-809, 2002.
13. J.C. Ho, N.E. Wijeysundera, S. Rajasekar and T.T. Chandratilleke, “Performance of a compact spiral-coil heat exchanger”, Heat Recovery Systems & CHP, Vol. 15 (5), pp. 457–468, 1995.
14. N.E. Wijeysundera, J.C. Ho and S. Rajasekar, “The effectiveness of a spiral coil heat exchanger”, International Communications in Heat and Mass Transfer, Vol. 23, pp. 623-631, 1996.
15. T.J. Rennie, V.G.S. Raghavan, “Numerical studies of a double-pipe helical heat exchanger”, Applied Thermal Engineering, Vol. 26, pp. 1266-1273, 2006.
16. T. Bes and W. Roetzel, “Thermal theory of the spiral heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 36, pp. 765–773, 1993.
17. H.A. Navarro and L.C. Gomez, “New approach for thermal performance calculation of cross-flow heat exchangers”, International Journal of Heat and Mass Transfer, Vol. 48 (18), pp. 3880-3888, 2005.
18. A.H. Navarro and L.C. Gomez, “Effectiveness-NTU computation with a mathematical model for cross-flow heat exchangers”, Brazilian Journal of Chemical Engineering, Vol. 24, pp. 509–521, 2007.
19. Y.H. Cho and H.M. Chang, “An effectiveness-NTU method for triple-passage counter-flow heat exchangers”, Journal of Mechanical Science and Technology, Vol. 7 (3), pp. 232–289, 1993.
20. L.C. Burmeister, “Effectiveness of a spiral-plate heat exchanger with equal capacitance rates”, Journal of Heat Transfer, Vol. 128, pp. 295-301, 2006.
21.J.Y. San, G.S. Lin and K.L. Pai, “Performance of serpentine heat exchanger: Part I-Effectiveness and heat transfer characteristics”, Applied Thermal Engineering, Vol. 29, pp. 3081-3087, 2009.
22. T. Bes and W. Roetzel, “Distribution of heat flux density in spiral heat exchangers”. International Journal of Heat and Mass Transfer, Vol. 35, pp. 1331–1347, 1992.
23. M. Adamski, “Heat transfer correlations and NTU number for the longitudinal flow spiral recuperators”, Applied Thermal Engineering, Vol. 29, pp. 591–596, 2009.
24. J.Y. San, W.M. Worek, Z. Lavan, “Second-law analysis of a two- dimensional regenerator”, Energy, Vol. 12, pp. 485-496, 1987.
25. P. Naphon, “Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger”, International Communications in Heat and Mass Transfer, Vol. 33, pp. 1029–1041, 2006.
26. J.Y. San and C.L. Jan, “Second-law analysis of a wet cross flow heat exchanger”, Energy, Vol. 25, pp. 939-955, 2000.
27. A. Gupta and S.K. Das, “Second law analysis of crossflow heat exchanger in the presence of axial dispersion in one fluid”, Energy, Vol. 32, pp. 664–672, 2007.
28. S. Sarangi and K. Chowdhury, “On the generation of entropy in a counterflow heat exchanger”. Cryogenics, Vol. 22, pp. 63–65, 1982.
29. J.Y. San and K.L. Pai, “Performance of a serpentine heat exchanger: Part II-Second-law efficiency”, Applied Thermal Engineering, Vol. 29, pp. 3088-3093, 2009.
30. S.Y. Wu, X.F. Yuan, Y.R. Li, L. Xiao, “Energy transfer effectiveness on heat exchanger for finite pressure drop”, Energy, Vol. 32, pp. 2110-2120, 2007.
31. D.F. Ruan, X.F Yuan, S.Y. Wu, and Y.R. Li, “Exergy effectiveness analysis of three-fluid heat exchanger”, Journal of Superconductivity and Novel Magnetism, Vol. 23 (6), pp. 1127-1131, 2010.
32. J.Y. San, “Second-law performance of heat exchangers for waste heat recovery”, Energy, Vol. 35, 2010.
33. A Bejan, “Second-law analysis in heat transfer”, Energy, Vol. 5, pp. 721-732, 1980.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top