跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.165) 您好!臺灣時間:2025/11/24 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱美珍
研究生(外文):Mei-Chen Chu
論文名稱:產銷配合最適政策模式分析
論文名稱(外文):The Optimal Policy For Matching Problem Between Manufacturing And Marketing
指導教授:陳淼勝陳淼勝引用關係
指導教授(外文):Chen Miao-Sheng
學位類別:博士
校院名稱:淡江大學
系所名稱:管理科學學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
論文頁數:103
中文關鍵詞:產銷配合最佳化生產計劃價格決策分析
外文關鍵詞:The Matching Problem Between Manufacturing And MarketingOptimizationProduction PlanningPriceDecision analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著資訊網路科技的普及,造就電子商務的發展與推廣日益蓬勃,而企業對企業的電子商務更強化整個供應鏈各環節運用整合性作業以及和諧合作的經營理念,也促使現代化的經營管理不能再只囿於降低生產成本的極小化問題,抑或市場價格的控制問題,而是必須相互結合探討的產銷配合控制問題。
本研究透過數學模式的建構探討生產與銷售互相配合的問題,亦即結合價格策略與生產速率策略兩者之間的協調互動整合問題。本整合問題約可分成下列四類型:(1)型一問題特質:針對銷售商必須配合製造商生產速率上限的產銷配合問題,探討在生產速率為給定的情形下,如何透過各時點之最適價格的決定,來控制其產品銷售速率,進而決定其零存貨時間長度與生產時間終點,以期在給定的銷售期間總利潤為最大。(2)型二問題特質:已製造完成之產品會隨著時間而改變其品質,且品質的改變會被需求者察覺而影響其需求量的情形。此類問題很多學者皆將其簡化而視為相當於退化性產品問題加以處理,這種因簡化而忽略兩者真正的差異是有待改進的。因此,本文亦針對產品新鮮度會影響銷售速率的產銷配合之特殊性構建最適控制數量模式,加以分析之。(3)型三問題特質:在生產速率為決策變數之情形下,探討如何決定最佳生產速率與如何透過不同時點價格的制定來控制每一時點的銷售速率,以期在給定的銷售期間總利潤最大。(4)型四問題特質:在設備資源已被不同產品競相利用的情形下,對於使用同一生產設備從事生產及銷售兩類產品的決策者應如何決定各類產品的上機生產時間長度、最佳生產速率及最佳銷售價格等問題,本文亦提出一具體的數學模式加以分析之。利用本文各模式的最佳解及各參數對最佳解的影響率等,可以輕易地透過程式設計構建成一功能模組,並可與電子商務系統整合而成為一個具有產銷配合最佳決策分析功能的系統。

Due to the highly development of information technology, the electronic commerce is getting popular. The “B2B” model in e-commerce magnifies the supply chain with the concept of “Integrated Operation and Cooperation”. Therefore, the modernized management no longer simply focus on problems like the optimal production rate to minimize the total cost or on the optimal sales price to maximize total profit, but rather have to consider the matching problems between manufacturing and marketing.
Facing the fast change in business, this study will consider not only the manufacturing strategy, but also the sales policy. The matching problem between manufacturing and marketing, in other word, the combination of price strategy and production strategy is discussed through constructing the mathematical model in this research.
The proposed integrated problems have four types of characteristics:
(1)Type I: The matching problem between manufacturing and marketing under the production upper bound. It is to determine the optimal price strategy at any given time and optimal zero-inventory horizon as well as optimal production horizon to maximize the total profit.
(2)Type II: The quality of finished product changes according to time, and the changes of product quality will affect the demand quantity from the demanders. Most studies simplified this problem and treat it as deteriorates. Therefore, the mathematical model for the optimal sales rate with the consideration of product freshness is constructed to meet practical usage.
(3)Type III: While the production rate is the decision variable, to investigate how to determine the optimal production rate and how to control the sales through different pricing strategies, in order to maximizing the profit in the certain sales interval.
(4)Type IV: A mathematical model is also provided for an integrated production-sales problem for an one-machine, two-product system. The optimal production horizon and production rate for each product as well as the optimal price strategy are determined, in order to maximize the profit.
The optimal solution of the proposed models can be easily coded and integrated with electronic commerce to construct an integrated system, which can offer useful information and help the decision makers in making theirs decision.

第一章 緒論1
1.1問題背景1
1.2研究動機與目的3
1.3本文結構7
第二章 文獻探討10
2.1最適訂購量之價格策略的存貨問題10
2.2最適生產批量之價格策略的存貨問題11
2.3退化性產品存貨問題13
2.4生產排程問題14
第三章 固定生產速率之下的最適價格控制模式15
3.1數學符號與假設16
3.2數學模式與最佳解18
3.3最佳解的敏感度分析27
3.4本章小結32
第四章 產品新鮮度會影響銷售速率的最適價格模式35
4.1數學符號與假設36
4.2數學模式與最佳解37
4.3最佳解的敏感度分析40
4.4本章小結47
第五章 生產速率為決策變數之下的最適銷售速率控制模式50
5.1數學符號與假設50
5.2數學模式與最佳解51
5.3本章小結60
第六章 兩種產品競爭使用同一生產設備之產銷配合模式62
6.1數學符號與假設63
6.2數學模式與最佳解66
6.3最佳解的敏感度分析72
6.4本章小結81
第七章 結論83
7.1 主要研究成果83
7.2 未來研究方向87
參考文獻90
附錄A95
附錄B96
附錄C97
附錄D98
附錄E99
附錄F101
附錄G102

參考文獻
1.Abad, P. L. (1988), “Determining Optimal Selling Price and Lot Sizing When the Supplier Offers All-Unit Quantity Discounts,” Decision Science, Vol. 19, pp. 622-634.
2.Adachi, Y., Nose, T. and Kuriyama, S. (1999), “Optimal Inventory Control Policy Subject to Different Selling Prices of Perishable Commodities,” International of production economics, Vol. 60-61, pp. 389-394.
3.Arcelus, F. J. and Srinivasan, G. (1987), “Inventory Policies under Various Optimizing Criteria and Variable Markup Rates,” Management Science, Vol. 33, pp. 756-762.
4.Berman, B. and Evans, J. R. (1998), Retail Management: A Strategic Approach, Prentice-Hall International, Inc., New Jersey.
5.Boctor, F. F. (1982), “The Two-Product, Single-Machine, Static Demand, Infinite Horizon Lot Scheduling Problem,” Management science, Vol. 28, No. 7, pp. 798-807.
6.Carr, C. R. (1961), Price Theory and Inventory Control, Doctoral Dissertation, Stanford University, California.
7.Chase, R. B. and Aquilano, N. J. (1995), Production and Operations Management: Manufacturing and Services, IRWIN Publishing Company, Reading, Chicago.
8.Chen, C. K. and Min, K. J. (1994), “An Analysis of Optimal Inventory and Pricing Policies under Linear Demand,” Asia-Pacific Journal of Operational Research, Vol. 11, pp. 117-129.
9.Cheng, T. C. E. (1991), “An Economic Order Quantity Model with Demand-Dependent Unit Production Cost and Imperfect Production Processes,” IIE Transactions, Vol. 23, pp. 23-28.
10.Cohen, M. A. (1977), “Joint Pricing and Ordering Policy for Exponentially Decaying Inventory with Known Demand,” Naval Research Logistic Quarterly, Vol. 24, pp. 257-268.
11.Eliashberg, J. and Steinberg, R. (1987), “ Marketing-Production Decisions in an Industrial Chanel of Distribution,” Management Science, Vol. 33, No. 8, pp. 981-1000.
12.Feichtinger, G. and Hartl, R. (1985), “Optimal Pricing and Production in an Inventory Model,” European Journal of Operational Research,” Vol. 19, pp. 45-56.
13.Gaimon, C. (1988), “Simultaneous and Dynamic Price, Production, Inventory and Capacity Decisions,” European Journal of Operational Research, Vol. 35, pp. 426-441.
14.Hariga, M. A. (1995), “Lot Sizing Models for Deteriorating Items with Time-dependent Demand,” International Journal of System Science, Vol. 26, pp. 2391-2401.
15.Hax, A. C. and Candea, D. (1984), Production and Inventory Management, Prentice-Hall, Englewood Cliffs, New Jersey.
16.Hodgson, T. J. (1972), “An Analytical Model of A Two-Product, One-Machine, Production-Inventory System,” Management Science, Vol. 19, No. 4, pp. 391-405.
17.Hodgson, T. J., Ge, G., King, R. E. and Said, H. (1997), “Dynamic Lot Size/Sequencing Policies in a Multi-Product, Single-Machine System,” IIE Transactions, Vol. 29, pp. 127-137.
18.Huang-Wei, A. W. (1996), “Zero Working Capital - An American New Business Idea,” Policy-Marking reference, Vol. 5, pp. 22.
19.Jorgensen, S. (1986), “Optimal Production, Purchasing and Pricing: A Differential Game Approach,” European Journal of Operational Research, Vol. 24, pp. 64-76.
20.Kalakota, R. and Winston, A. B. (1997), Electronic Commerce: A Manager’s Guide, Addison-Wesley.
21.Kamien, M. I. And Schwartz, N. L. (1981), Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, North-Holland New York.
22.Kang, S. and Kim, I. (1983), “A Study on the Price and Production Level of the Deteriorating Inventory System,” International Journal of Production Researchs, Vol. 21, pp. 449-460.
23.Kim, D. and Lee, W. J. (1998), “Optimal Coordination Strategies for Production and Marketing Decisions,” Operations Research Letter, Vol. 22, pp. 41-47.
24.Kotler, P. (1997), Marketing Management: Analysis, Planning, Implementation, and Control, 9th Edition Prentice Hall International, Inc., New Jersey.
25.Kunreunther, H. and Richard, J. F. (1971), “Optimal Pricing and Inventory Decision for Non-Seasonal Items,” Econometrica, Vol. 39, No. 1, pp. 173-175.
26.Ladany, S. and Sternlieb, A. (1974), “The Interaction of Economic Ordering Quantities and Marketing Policies,” AIIE Transactions, Vol. 6, No. 1, pp. 35-40.
27.Lazear, E. P. (1986), “Retail Pricing and Clearance Sales,” American Economic Reviews, Vol. 76, pp. 14-32.
28.Lee, W. J. (1993), “Determining Order Quantity and Selling Price by Geometric Programming:Optimal Solution, Bounds, and Sensitivity,” Decision Science, Vol. 24, No. 1, pp. 76-87.
29.Lee, W. J. and Kim, D. (1993), “Optimal and Heuristic Decision Strategies for Integerated Production and Marketing Planning,” Decision Science, Vol. 24, No. 6, pp. 1203-1213.
30.Lee, W. J., Kim, D. and Cabot, A. V. (1996), “Optimal Demand Rate, Lot Sizing and Process Reliability Improvement Decisions,” IIE Transactions, Vol. 28, pp. 941-952.
31.Lev, B. and Weiss, H. J. (1990), “Inventory Models with Cost Changes,” Operations Research, Vol. 38, No. 1, pp. 53-63.
32.Mak, K. L. (1982), “A Production Lot Size Inventory Model for Deteriorating Items,” Computers and Industrial Engineering, Vol. 6, No. 4, pp. 309-317.
33.Martin, G. E. (1994), “Note on an EQQ Model with a Temporary Sale Price,” International Journal of Production Economics, Vol. 37, pp. 241-243.
34.Misra, R. B. (1975), “Optimum Production Lot Size Model for a System with Deteriorating Inventory,” International Journal of Production Research, Vol. 13, No. 5, pp. 495-505.
35.Pekelman, D. (1974), “Simultaneous Price-Production Decisions,” Operations Research, Vol. 22, No. 1, pp. 788-794.
36.Porteus, E. L. (1986), “Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction,” Operations Research, Vol. 34, No. 1, 137-144.
37.Raafat, F., Wolfe, P. M. and Eldin, H. K. (1991), “An Inventory Model for Deteriorating Items,” Computers and Industrial Engineering, Vol. 20, No. 1, pp. 89-94.
38.Rakesh, A. R. and Steinberg, R. (1992), “Dynamic Pricing and Ordering Decisions by a Monopolist,” Management Science, Vol. 38, No.2, pp. 240-262.
39.Rosenblatt, M. and Lee, H. L. (1986), “Economic Production Cycles with Imperfect Production Processes,” IIE Transactions, Vol. 14, pp. 45-55.
40.Schwarz, L. B. (1977), “A Note on the Near Optimality of ř-EOQ's worth" Forecast Horizons,” Operations Research, Vol. 25, No. 3, pp. 533-536.
41.Simon, H. (1989), Price Management, North Holland, NY.
42.Taylor, S. G. and Bradley, C. E. (1985), ”Optimal Ordering Strategies for Announced Price Increases,” Operations Research, Vol. 33, pp. 312-325.
43.Thomas, J. (1970), “Price-Production Decisions with Deterministic Demand,” Management Science, Vol. 16, No. 11, pp. 747-750.
44.Wee, H. M. and Yu, J. (1997), “A Deteriorating Inventory Model with a Temporary Price Discount,” International Journal of Production Economics, Vol. 53, pp. 81-90.
45.Whitin, T. M. (1955), “Inventory Control and Price Theory,” Management Science, Vol. 2, No. 1, pp. 61-68.
46.Zwass, V. (1996), “Electronic Commerce: Structures and Issues,” International Journal of Electronic Commerce, Vol. 1, No. 1, pp. 3-23.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top