|
1. Jones DL. Oral cancer: diagnosis, treatment, and management of sequela. Texas dental journal 2012;129(5):459. 2. Global Burden of Disease Study C. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015. 3. Chen YJ, Lin SC, Kao T, Chang CS, Hong PS, Shieh TM, et al. Genome-wide profiling of oral squamous cell carcinoma. J Pathol 2004;204(3):326-32. 4. Pentenero M, Gandolfo S, Carrozzo M. Importance of tumor thickness and depth of invasion in nodal involvement and prognosis of oral squamous cell carcinoma: a review of the literature. Head &; neck 2005;27(12):1080-91. 5. Botchkarev VA, Flores ER. p53/p63/p73 in the epidermis in health and disease. Cold Spring Harbor perspectives in medicine 2014;4(8). 6. Schilling B, De-Medina T, Syken J, Vidal M, Münger K. A Novel Human DnaJ Protein, hTid-1, a Homolog of the Drosophila Tumor Suppressor Protein Tid56, Can Interact with the Human Papillomavirus Type 16 E7 Oncoprotein. Virology 1998;247(1):74-85. 7. Nothiger R, and Nothiger,R. . The Biology of Imaginal Disks. . Springer pp 1972:1-34. 8. Kurzik-Dumke U GD, Renthrop M, Gateff E. Tumor suppression in Drosophila is causally related to the function of the lethal(2) tumorous imaginal discs gene, a dnaJ homolog. Dev Genet 1995;16(1):64-76. 9. Kurzik-Dumke U DA, Kaymer M, Dienes P. Mitochondrial localization and temporal expression of the Drosophila melanogaster DnaJ homologous tumor suppressor Tid50. Cell Stress Chaperones 1998;3(1):12-27. 10. Yin X, Rozakis-Adcock M. Genomic organization and expression of the human tumorous imaginal disc (TID1) gene. Gene 2001;278(1-2):201-10. 11. Syken J, De-Medina T, Münger K. TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proceedings of the National Academy of Sciences of the United States of America 1999;96(15):8499-504. 12. Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, et al. Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proceedings of the National Academy of Sciences of the United States of America 1999;96(10):5452-57. 13. Cyr DM, Lu X, Douglas MG. Regulation of Hsp70 function by a eukaryotic DnaJ homolog. Journal of Biological Chemistry 1992;267(29):20927-31. 14. Trentin GA, Yin X, Tahir S, Lhoták Š, Farhang-Fallah J, Li Y, et al. A Mouse Homologue of the Drosophila Tumor Suppressor l(2)tid Gene Defines a Novel Ras GTPase-activating Protein (RasGAP)-binding Protein. Journal of Biological Chemistry 2001;276(16):13087-95. 15. Fujita M NY, Sawada T, Heese K. Identification of rTid-1, the rat homologue of the drosophila tumor suppressor l(2)tid gene. Mol Cell Biochem 2004;258(1-2):183-9. 16. Torregroza I, Evans T. Tid1 is a Smad-binding protein that can modulate Smad7 activity in developing embryos. Biochem J 2006;393(1):311-20. 17. Lo J-F, Hayashi M, Woo-Kim S, Tian B, Huang J-F, Fearns C, et al. Tid1, a Cochaperone of the Heat Shock 70 Protein and the Mammalian Counterpart of the Drosophila Tumor Suppressor l(2)tid, Is Critical for Early Embryonic Development and Cell Survival. Mol Cell Biol 2004;24(6):2226-36. 18. Cheng H, Cenciarelli C, Shao Z, Vidal M, Parks WP, Pagano M, et al. Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Current Biology 2001;11(22):1771-75. 19. Cheng H, Cenciarelli C, Tao M, Parks WP, Cheng-Mayer C. HTLV-1 Tax-associated hTid-1, a Human DnaJ Protein, Is a Repressor of IκB Kinase β Subunit. Journal of Biological Chemistry 2002;277(23):20605-10. 20. Eom C-Y, Lehman IR. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proceedings of the National Academy of Sciences of the United States of America 2002;99(4):1894-98. 21. Wang L, Tam JP, Liu DX. Biochemical and functional characterization of Epstein-Barr virus-encoded BARF1 protein: interaction with human hTid1 protein facilitates its maturation and secretion. Oncogene 2006;25(31):4320-31. 22. Sohn S-Y, Kim J-H, Baek K-W, Ryu W-S, Ahn B-Y. Turnover of hepatitis B virus X protein is facilitated by Hdj1, a human Hsp40/DnaJ protein. Biochemical and Biophysical Research Communications 2006;347(3):764-68. 23. Sasaki S NT, Arakawa H, Mori M, Watanabe T, Nagawa H, Croce CM. Isolation and characterization of a novel gene, hRFI, preferentially expressed in esophageal cancer. Oncogene 2002;21(32):5024-30. 24. Liu H-Y, MacDonald JIS, Hryciw T, Li C, Meakin SO. Human Tumorous Imaginal Disc 1 (TID1) Associates with Trk Receptor Tyrosine Kinases and Regulates Neurite Outgrowth in nnr5-TrkA Cells. Journal of Biological Chemistry 2005;280(20):19461-71. 25. Kim S-W, Chao T-H, Xiang R, Lo J-F, Campbell MJ, Fearns C, et al. Tid1, the Human Homologue of a Drosophila Tumor Suppressor, Reduces the Malignant Activity of ErbB-2 in Carcinoma Cells. Cancer Res 2004;64(21):7732-39. 26. Wakabayashi Y, Mao J-H, Brown K, Girardi M, Balmain A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature 2007;445(7129):761-65. 27. Sarkar S, Pollack BP, Lin K-T, Kotenko SV, Cook JR, Lewis A, et al. hTid-1, a Human DnaJ Protein, Modulates the Interferon Signaling Pathway. Journal of Biological Chemistry 2001;276(52):49034-42. 28. Bae M-K, Jeong J-W, Kim S-H, Kim S-Y, Kang HJ, Kim D-M, et al. Tid-1 Interacts with the von Hippel-Lindau Protein and Modulates Angiogenesis by Destabilization of HIF-1{alpha}. Cancer Res 2005;65(7):2520-25. 29. Kurzik-Dumke U, Czaja J. Htid-1, the human homolog of the Drosophila melanogaster l(2)tid tumor suppressor, defines a novel physiological role of APC. Cellular Signalling 2007;19(9):1973-85. 30. Qian J, Perchiniak EM, Sun K, Groden J. The Mitochondrial Protein hTID-1 Partners With the Caspase-Cleaved Adenomatous Polyposis Cell Tumor Suppressor to Facilitate Apoptosis. Gastroenterology 2010;138(4):1418-28. 31. Jan CI, Yu CC, Hung MC, Harn HJ, Nieh S, Lee HS, et al. Tid1, CHIP and ErbB2 interactions and their prognostic implications for breast cancer patients. J Pathol 2011;225(3):424-37. 32. Kim S-W, Hayashi M, Lo J-F, Fearns C, Xiang R, Lazennec G, et al. Tid1 Negatively Regulates the Migratory Potential of Cancer Cells by Inhibiting the Production of Interleukin-8. Cancer Res 2005;65(19):8784-91. 33. Chen CY, Jan CI, Lo JF, Yang SC, Chang YL, Pan SH, et al. Tid1-L inhibits EGFR signaling in lung adenocarcinoma by enhancing EGFR Ubiquitinylation and degradation. Cancer Res 2013;73(13):4009-19. 34. Canamasas I, Debes A, Natali PG, Kurzik-Dumke U. Understanding Human Cancer Using Drosophila, Tid47, A CYTOSOLIC PRODUCT OF THE DnaJ-LIKE TUMOR SUPPRESSOR GENE l(2)Tid, IS A NOVEL MOLECULAR PARTNER OF PATCHED RELATED TO SKIN CANCER Journal of Biological Chemistry 2003;278(33):30952-60. 35. di Magliano MP, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003;3(12):903-11. 36. Edwards KM, Munger K. Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 2004;23(52):8419-31. 37. Trentin GA, He Y, Wu DC, Tang D, Rozakis-Adcock M. Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Letters 2004;578(3):323-30. 38. Kurzik-Dumke U HM, Czaja J, Nicotra MR, Simiantonaki N, Koslowski M, Natali PG. Progression of colorectal cancers correlates with overexpression and loss of polarization of expression of the htid-1 tumor suppressor. Int J Mol Med 2008;21(1):19-31. 39. Chen C-Y, Chiou S-H, Huang C-Y, Jan C-I, Lin S-C, Hu W-Y, et al. Tid1 functions as a tumour suppressor in head and neck squamous cell carcinoma. The Journal of Pathology 2009;219(3):347-55. 40. Bukau B, Horwich AL. The Hsp70 and Hsp60 Chaperone Machines. Cell 1998;92(3):351-66. 41. Hartl TLCLHEJFMKHFU. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 1992;356:683-89. 42. Schröder H LT, Hartl FU, Bukau B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 1993;12(11):4137-44. 43. Genevaux P, Georgopoulos C, Kelley WL. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Molecular Microbiology 2007;66(4):840-57. 44. Theyssen H, Schuster H-P, Packschies L, Bukau B, Reinstein J. The Second Step of ATP Binding to DnaK Induces Peptide Release. Journal of Molecular Biology 1996;263(5):657-70. 45. Szabo A LT, Schröder H, Flanagan J, Bukau B, Hartl FU. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A 1994;91(22):10345-9. 46. Buchberger A, Schröder H, Hesterkamp T, Schönfeld H-J, Bukau B. Substrate Shuttling Between the DnaK and GroEL Systems Indicates a Chaperone Network Promoting Protein Folding. Journal of Molecular Biology 1996;261(3):328-33. 47. Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, et al. Nucleotide-induced Conformational Changes in the ATPase and Substrate Binding Domains of the DnaK Chaperone Provide Evidence for Interdomain Communication. Journal of Biological Chemistry 1995;270(28):16903-10. 48. Ha JH MD. Kinetics of nucleotide-induced changes in the tryptophan fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding. Biochemistry 1995;34(36):11635-44. 49. Wall D, Zylicz M, Georgopoulos C. The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. Journal of Biological Chemistry 1994;269(7):5446-51. 50. Tsai J, Douglas MG. A Conserved HPD Sequence of the J-domain Is Necessary for YDJ1 Stimulation of Hsp70 ATPase Activity at a Site Distinct from Substrate Binding. Journal of Biological Chemistry 1996;271(16):9347-54. 51. Garrido C BM, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 2006;5(22):2592-601. 52. Zhang J, Lou X, Yang S, He S, Yang L, Liu M, et al. BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21(CIP1) pathway. Cancer letters 2012;318(1):34-41. 53. Kabbage M, Dickman MB. The BAG proteins: a ubiquitous family of chaperone regulators. Cellular and molecular life sciences : CMLS 2008;65(9):1390-402. 54. Wang HQ, Zhang HY, Hao FJ, Meng X, Guan Y, Du ZX. Induction of BAG2 protein during proteasome inhibitor-induced apoptosis in thyroid carcinoma cells. British journal of pharmacology 2008;155(5):655-60. 55. Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, et al. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. The EMBO journal 1997;16(16):4887-96. 56. Takayama S, Reed JC. Molecular chaperone targeting and regulation by BAG family proteins. Nature cell biology 2001;3(10):E237-41. 57. Takayama S, Xie Z, Reed JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. The Journal of biological chemistry 1999;274(2):781-6. 58. Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, et al. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. The Journal of biological chemistry 2005;280(46):38673-81. 59. Arndt V, Daniel C, Nastainczyk W, Alberti S, Hohfeld J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Molecular biology of the cell 2005;16(12):5891-900. 60. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Molecular and cellular biology 1999;19(6):4535-45. 61. Chen CY, Chiou SH, Huang CY, Jan CI, Lin SC, Tsai ML, et al. Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model. Journal of biomedical science 2009;16:100. 62. Syken J, De-Medina T, Munger K. TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci U S A 1999;96(15):8499-504. 63. Ahn BY, Trinh DL, Zajchowski LD, Lee B, Elwi AN, Kim SW. Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 2010;29(8):1155-66. 64. Liu BQ, Du ZX, Zong ZH, Li C, Li N, Zhang Q, et al. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells. Autophagy 2013;9(6):905-16. 65. Niu G, Zhang H, Liu D, Chen L, Belani C, Wang HG, et al. Tid1, the mammalian homologue of Drosophila tumor suppressor Tid56, mediates macroautophagy by interacting with Beclin1-containing autophagy protein complex. The Journal of biological chemistry 2015. 66. Min Y, Xu W, Liu D, Shen H, Xu Y, Zhang S, et al. Earle's balanced salts solution and rapamycin differentially regulate the Bacillus Calmette-Guerin-induced maturation of human dendritic cells. Acta biochimica et biophysica Sinica 2013;45(3):162-9. 67. Boiani M, Daniel C, Liu X, Hogarty MD, Marnett LJ. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737. The Journal of biological chemistry 2013;288(10):6980-90. 68. Kong DH, Zhang Q, Meng X, Zong ZH, Li C, Liu BQ, et al. BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78. Biochimica et biophysica acta 2013;1833(12):3245-53. 69. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology 2010;11(8):579-92.
|