跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/22 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佳琪
研究生(外文):Chia-Chi Chen
論文名稱:探討口腔鱗狀細胞癌中與Tid1蛋白結合的蛋白BAG2之影響腫瘤生成之機制
論文名稱(外文):To Characterize the Function of Tid1-Interacting Protein, BAG2, in Oral Squamous Cell Carcinoma Tumorigenesis
指導教授:羅正汎
指導教授(外文):Jeng-Fan Lo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:108
中文關鍵詞:tumorous imaginal discs 蛋白associated athanogene蛋白口腔鱗狀細胞癌
外文關鍵詞:tumorous imaginal discs 1Bcl-2 associated athanogeneOral Squamous Cell Carcinoma Tumorigenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
口腔癌 ( OSCC ) 屬於頭頸癌 ( HNSCC ) 的一種,相較往年的統計資料,口腔癌的致死率有逐年升高的趨勢。 Tid1屬 DNAJ protein 的家族成員能和 Heat shock protein ( HSP70 ) 交互作用,在口腔癌中扮演腫瘤抑制者 ( tumor suppressor ) 的角色,且能促進對致癌蛋白( oncoprotein ) 的降解 ( degradation )。 Tid1有兩種 isoforms , Tid1 long form ( Tid1-L ) 和 Tid1 short form ( Tid1-S )。兩種 isoforms 在細胞中擁有不同功用。實驗室先前利用蛋白質體學方法 ( proteomics ) 尋找和 Tid1結合的蛋白質,首先以定點突變法 ( site-directed mutagenesis ) 將 Tid1和 HSP70結合的 DnaJ domain HPD loop 突變,進而以親和層析法純化Tid1蛋白複合物,再以質譜儀鑑定且相互比較,發現Tid1-SMu會和BAG2蛋白特異性結合,但BAG2在口腔癌中所扮演的角色仍然還不清楚。
本論文首先以免疫共沉澱和共軛焦顯微鏡,確認在細胞內 Tid1確實和 BAG2有結合,並且兩者可共同存在於粒線體中。對於在口腔癌細胞中過度表現或抑制 BAG2表現,皆對癌細胞表型有一定之影響。因此統整本論文之結果發現 Tid1和 BAG2在口腔癌細胞中具有一定影響力。

Oral squamous cell carcinoma (OSCC) is a major subtype of head and neck squamous cell carcinoma (HNSCC). Depanding on the data, OSCC mortality rate is increasing year by year. Tid1, a DnaJ cochaperon protein, can bind with HSP70, functions as a tumour suppressor in OSCC tumourigenesis. We previously used systemic proteomics analysis to identify Tid1 interacting protein. The HPD loop of DnaJ domain could bind with HSP70 which on Tid1 was mutated by site-directed mutagenesis. Through affinity chromatography and mass spectrometry we identified BAG2 that specifically interact with Tid1 short form (Tid1-S) lacking the functional DnaJ domain. However, the role of BAG2 in OSCC tumourigenesis remains unclear.
First, co-immunoprecipitation analysis and confocal microscope were performed to confirm the protein interaction between BAG2 and Tid1. Besides, BAG2 and Tid1 are colocolization in mitochondrial. No matter overexpression or silencing BAG2 in OSCC cells, it always has effects on their phenotypes. Together, these findings suggest that, Tid1 and BAG2 have important roles in OSCC cells.

目錄
致謝 i
中文摘要 ii
Abstract iii
目錄...................................................................................................iv
圖目錄 ix
附錄 xi
壹、緒論 1
一、口腔癌 1
二、 Tid1背景研究之介紹 2
2.1源起 2
2.2 Drosophila tumor suppressor Tid56 2
2.3 Tid1的基因結構 (genomic structure) 3
2.4 Tid1 及其結合之受質蛋白質 4
2.5 Tid1和腫瘤生成 ( tumorigenesis ) 的關係 6
2.6 Tid1 與Heat shock protein 70 ( HSP70 ) 9
三、 以蛋白質體學研究 Tid1 結合之受質蛋白 11
3.1以 site-directed mutagenesis 找尋 Tid1 之受質蛋白 11
3.2找尋標的蛋白質的方法 12
3.3 分析標的蛋白質結果 12
四、BAG2之介紹 13
4-1. BAG family 13
4-2. BAG2簡介 14
貳、研究目標 16
參、材料與方法 17
一、實驗材料 17
二、實驗方法 26
2-1. 聚和酶連鎖反應 ( polymerase chain reaction,PCR ) 26
2-2. PCR cloning 26
2-3. DNA洋菜膠體 ( agarose gel ) 電泳 27
2-4. 大腸桿菌轉形作用 ( Heat-shock transformation ) 27
2-5. 細菌的培養 28
2-6. PCR菌落快速篩選法 ( PCR quick screening ) 29
2-7. 限制酶切割作用 ( restriction enzyme digestion ) 29
2-8. DNA定序及序列比對分析 30
2-9. DNA片段純化作用 ( gel purification ) 30
2-10. DNA接合反應 ( ligation ) 31
2-11. 大腸桿菌中質體DNA的製備 32
2-12. DNA酒精沉澱作用 32
2-13. 細胞株及其培養 32
2-14. DNA轉染作用 ( transfection ) 36
2-15. 細胞萃取液之製備 37
2-16. 蛋白質定量 38
2-17. 膠凝體電泳 ( sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE ) 38
2-18. 西方墨點法 ( western blotting ) 39
2-19. 免疫共沉澱法 ( co-Immunoprecipitation,Co-IP ) 41
2-20. 免疫螢光染色 (immunofluorescence staining) 及雷射掃描共軛焦顯微鏡 ( laser confocal microscope ) 42
2-21. 細胞存活能力分析 ( MTT assay ) 43
2-22. 細胞爬行能力分析 ( migration assay ) 43
2-23. 細胞不貼附生長Anchorage-Independent Growth ( soft agar colony formation assay ) 44
2-24. 建立病毒 45
2-25. 細胞感染 ( infection ) 45
2-26. 抗生素篩選感染細胞株 46
2-27. 統計 46
肆、研究結果 47
一、在293T 細胞株中過度表現BAG2植體 47
二、以免疫共沉澱法 ( Co-immunoprecipitation,Co-IP ) 確認 Tid1和 BAG2之結合 47
三、以雷射掃描共軛焦顯微鏡 ( Laser confocal microscope ) 確認Tid1和BAG2是否在粒線體 ( sub-localization ) 48
四、分析口腔癌細胞株BAG2表現量 48
五、在SAS 細胞株中過度表現BAG2 49
六、探討在SAS 細胞株中過度表現BAG2之口腔癌細胞的存活率 ( viability ) 50
七、探討在SAS 細胞株中過度表現BAG2之口腔癌細胞的爬行能力 ( migration ) 50
八、利用Soft Agar探討BAG2過度表現的SAS癌細胞不貼附生長 ( anchorage-independent growth ) 之能力 51
九、在 OECM-1細胞株中過度表現 BAG2 51
十、探討在 OECM-1細胞株中過度表現BAG2之口腔癌細胞的存活率 ( viability ) 52
十一、利用Soft Agar探討BAG2過度表現的OECM-1癌細胞不貼附生長 ( anchorage - independent growth ) 之能力 52
十二、確認抑制BAG2基因表達質體的抑制效果 53
十三、探討在SAS 和OECM-1細胞株中shBAG2之口腔癌細胞的存活率 ( viability ) 53
十四、探討在SAS和OECM-1細胞中shBAG2之口腔癌細胞的增生能力 ( proliferation ) 54
十五、探討在SAS和OECM-1細胞株中抑制 BAG2之口腔癌細胞的爬行能力 ( migration ) 54
十六、利用 Soft Agar 探討在 SAS 和 OECM-1細胞株中抑制 BAG2的口腔癌細胞不貼附生長 ( anchorage - independent growth ) 之能力 54
伍、研究討論 55
一、利用免疫共沉澱 ( Co-immunoprecipitation ) 和雷射共軛焦顯微鏡 ( confocal microscopy ) 釐清 BAG2與 Tid1的關係 55
二、BAG2在口腔癌細胞中扮演的角色 56
三、BAG2在口腔癌細胞中是否會誘導細胞凋亡 ( apoptosis ) 57
四、BAG2與細胞自嗜 ( autophagy ) 的關係 57
五、使用臨床藥物測定BAG2在口腔癌細胞中的角色 58
六、未來目標 58
陸、參考文獻 59
柒、實驗圖表 66
捌、附錄 101


1. Jones DL. Oral cancer: diagnosis, treatment, and management of sequela. Texas dental journal 2012;129(5):459.
2. Global Burden of Disease Study C. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015.
3. Chen YJ, Lin SC, Kao T, Chang CS, Hong PS, Shieh TM, et al. Genome-wide profiling of oral squamous cell carcinoma. J Pathol 2004;204(3):326-32.
4. Pentenero M, Gandolfo S, Carrozzo M. Importance of tumor thickness and depth of invasion in nodal involvement and prognosis of oral squamous cell carcinoma: a review of the literature. Head &; neck 2005;27(12):1080-91.
5. Botchkarev VA, Flores ER. p53/p63/p73 in the epidermis in health and disease. Cold Spring Harbor perspectives in medicine 2014;4(8).
6. Schilling B, De-Medina T, Syken J, Vidal M, Münger K. A Novel Human DnaJ Protein, hTid-1, a Homolog of the Drosophila Tumor Suppressor Protein Tid56, Can Interact with the Human Papillomavirus Type 16 E7 Oncoprotein. Virology 1998;247(1):74-85.
7. Nothiger R, and Nothiger,R. . The Biology of Imaginal Disks. . Springer pp 1972:1-34.
8. Kurzik-Dumke U GD, Renthrop M, Gateff E. Tumor suppression in Drosophila is causally related to the function of the lethal(2) tumorous imaginal discs gene, a dnaJ homolog. Dev Genet 1995;16(1):64-76.
9. Kurzik-Dumke U DA, Kaymer M, Dienes P. Mitochondrial localization and temporal expression of the Drosophila melanogaster DnaJ homologous tumor suppressor Tid50. Cell Stress Chaperones 1998;3(1):12-27.
10. Yin X, Rozakis-Adcock M. Genomic organization and expression of the human tumorous imaginal disc (TID1) gene. Gene 2001;278(1-2):201-10.
11. Syken J, De-Medina T, Münger K. TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proceedings of the National Academy of Sciences of the United States of America 1999;96(15):8499-504.
12. Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, et al. Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proceedings of the National Academy of Sciences of the United States of America 1999;96(10):5452-57.
13. Cyr DM, Lu X, Douglas MG. Regulation of Hsp70 function by a eukaryotic DnaJ homolog. Journal of Biological Chemistry 1992;267(29):20927-31.
14. Trentin GA, Yin X, Tahir S, Lhoták Š, Farhang-Fallah J, Li Y, et al. A Mouse Homologue of the Drosophila Tumor Suppressor l(2)tid Gene Defines a Novel Ras GTPase-activating Protein (RasGAP)-binding Protein. Journal of Biological Chemistry 2001;276(16):13087-95.
15. Fujita M NY, Sawada T, Heese K. Identification of rTid-1, the rat homologue of the drosophila tumor suppressor l(2)tid gene. Mol Cell Biochem 2004;258(1-2):183-9.
16. Torregroza I, Evans T. Tid1 is a Smad-binding protein that can modulate Smad7 activity in developing embryos. Biochem J 2006;393(1):311-20.
17. Lo J-F, Hayashi M, Woo-Kim S, Tian B, Huang J-F, Fearns C, et al. Tid1, a Cochaperone of the Heat Shock 70 Protein and the Mammalian Counterpart of the Drosophila Tumor Suppressor l(2)tid, Is Critical for Early Embryonic Development and Cell Survival. Mol Cell Biol 2004;24(6):2226-36.
18. Cheng H, Cenciarelli C, Shao Z, Vidal M, Parks WP, Pagano M, et al. Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Current Biology 2001;11(22):1771-75.
19. Cheng H, Cenciarelli C, Tao M, Parks WP, Cheng-Mayer C. HTLV-1 Tax-associated hTid-1, a Human DnaJ Protein, Is a Repressor of IκB Kinase β Subunit. Journal of Biological Chemistry 2002;277(23):20605-10.
20. Eom C-Y, Lehman IR. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proceedings of the National Academy of Sciences of the United States of America 2002;99(4):1894-98.
21. Wang L, Tam JP, Liu DX. Biochemical and functional characterization of Epstein-Barr virus-encoded BARF1 protein: interaction with human hTid1 protein facilitates its maturation and secretion. Oncogene 2006;25(31):4320-31.
22. Sohn S-Y, Kim J-H, Baek K-W, Ryu W-S, Ahn B-Y. Turnover of hepatitis B virus X protein is facilitated by Hdj1, a human Hsp40/DnaJ protein. Biochemical and Biophysical Research Communications 2006;347(3):764-68.
23. Sasaki S NT, Arakawa H, Mori M, Watanabe T, Nagawa H, Croce CM. Isolation and characterization of a novel gene, hRFI, preferentially expressed in esophageal cancer. Oncogene 2002;21(32):5024-30.
24. Liu H-Y, MacDonald JIS, Hryciw T, Li C, Meakin SO. Human Tumorous Imaginal Disc 1 (TID1) Associates with Trk Receptor Tyrosine Kinases and Regulates Neurite Outgrowth in nnr5-TrkA Cells. Journal of Biological Chemistry 2005;280(20):19461-71.
25. Kim S-W, Chao T-H, Xiang R, Lo J-F, Campbell MJ, Fearns C, et al. Tid1, the Human Homologue of a Drosophila Tumor Suppressor, Reduces the Malignant Activity of ErbB-2 in Carcinoma Cells. Cancer Res 2004;64(21):7732-39.
26. Wakabayashi Y, Mao J-H, Brown K, Girardi M, Balmain A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature 2007;445(7129):761-65.
27. Sarkar S, Pollack BP, Lin K-T, Kotenko SV, Cook JR, Lewis A, et al. hTid-1, a Human DnaJ Protein, Modulates the Interferon Signaling Pathway. Journal of Biological Chemistry 2001;276(52):49034-42.
28. Bae M-K, Jeong J-W, Kim S-H, Kim S-Y, Kang HJ, Kim D-M, et al. Tid-1 Interacts with the von Hippel-Lindau Protein and Modulates Angiogenesis by Destabilization of HIF-1{alpha}. Cancer Res 2005;65(7):2520-25.
29. Kurzik-Dumke U, Czaja J. Htid-1, the human homolog of the Drosophila melanogaster l(2)tid tumor suppressor, defines a novel physiological role of APC. Cellular Signalling 2007;19(9):1973-85.
30. Qian J, Perchiniak EM, Sun K, Groden J. The Mitochondrial Protein hTID-1 Partners With the Caspase-Cleaved Adenomatous Polyposis Cell Tumor Suppressor to Facilitate Apoptosis. Gastroenterology 2010;138(4):1418-28.
31. Jan CI, Yu CC, Hung MC, Harn HJ, Nieh S, Lee HS, et al. Tid1, CHIP and ErbB2 interactions and their prognostic implications for breast cancer patients. J Pathol 2011;225(3):424-37.
32. Kim S-W, Hayashi M, Lo J-F, Fearns C, Xiang R, Lazennec G, et al. Tid1 Negatively Regulates the Migratory Potential of Cancer Cells by Inhibiting the Production of Interleukin-8. Cancer Res 2005;65(19):8784-91.
33. Chen CY, Jan CI, Lo JF, Yang SC, Chang YL, Pan SH, et al. Tid1-L inhibits EGFR signaling in lung adenocarcinoma by enhancing EGFR Ubiquitinylation and degradation. Cancer Res 2013;73(13):4009-19.
34. Canamasas I, Debes A, Natali PG, Kurzik-Dumke U. Understanding Human Cancer Using Drosophila,
Tid47, A CYTOSOLIC PRODUCT OF THE DnaJ-LIKE TUMOR SUPPRESSOR GENE l(2)Tid, IS A NOVEL MOLECULAR PARTNER OF PATCHED RELATED TO SKIN CANCER Journal of Biological Chemistry 2003;278(33):30952-60.
35. di Magliano MP, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003;3(12):903-11.
36. Edwards KM, Munger K. Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 2004;23(52):8419-31.
37. Trentin GA, He Y, Wu DC, Tang D, Rozakis-Adcock M. Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Letters 2004;578(3):323-30.
38. Kurzik-Dumke U HM, Czaja J, Nicotra MR, Simiantonaki N, Koslowski M, Natali PG. Progression of colorectal cancers correlates with overexpression and loss of polarization of expression of the htid-1 tumor suppressor. Int J Mol Med 2008;21(1):19-31.
39. Chen C-Y, Chiou S-H, Huang C-Y, Jan C-I, Lin S-C, Hu W-Y, et al. Tid1 functions as a tumour suppressor in head and neck squamous cell carcinoma. The Journal of Pathology 2009;219(3):347-55.
40. Bukau B, Horwich AL. The Hsp70 and Hsp60 Chaperone Machines. Cell 1998;92(3):351-66.
41. Hartl TLCLHEJFMKHFU. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 1992;356:683-89.
42. Schröder H LT, Hartl FU, Bukau B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 1993;12(11):4137-44.
43. Genevaux P, Georgopoulos C, Kelley WL. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Molecular Microbiology 2007;66(4):840-57.
44. Theyssen H, Schuster H-P, Packschies L, Bukau B, Reinstein J. The Second Step of ATP Binding to DnaK Induces Peptide Release. Journal of Molecular Biology 1996;263(5):657-70.
45. Szabo A LT, Schröder H, Flanagan J, Bukau B, Hartl FU. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A 1994;91(22):10345-9.
46. Buchberger A, Schröder H, Hesterkamp T, Schönfeld H-J, Bukau B. Substrate Shuttling Between the DnaK and GroEL Systems Indicates a Chaperone Network Promoting Protein Folding. Journal of Molecular Biology 1996;261(3):328-33.
47. Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, et al. Nucleotide-induced Conformational Changes in the ATPase and Substrate Binding Domains of the DnaK Chaperone Provide Evidence for Interdomain Communication. Journal of Biological Chemistry 1995;270(28):16903-10.
48. Ha JH MD. Kinetics of nucleotide-induced changes in the tryptophan fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding. Biochemistry 1995;34(36):11635-44.
49. Wall D, Zylicz M, Georgopoulos C. The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. Journal of Biological Chemistry 1994;269(7):5446-51.
50. Tsai J, Douglas MG. A Conserved HPD Sequence of the J-domain Is Necessary for YDJ1 Stimulation of Hsp70 ATPase Activity at a Site Distinct from Substrate Binding. Journal of Biological Chemistry 1996;271(16):9347-54.
51. Garrido C BM, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 2006;5(22):2592-601.
52. Zhang J, Lou X, Yang S, He S, Yang L, Liu M, et al. BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21(CIP1) pathway. Cancer letters 2012;318(1):34-41.
53. Kabbage M, Dickman MB. The BAG proteins: a ubiquitous family of chaperone regulators. Cellular and molecular life sciences : CMLS 2008;65(9):1390-402.
54. Wang HQ, Zhang HY, Hao FJ, Meng X, Guan Y, Du ZX. Induction of BAG2 protein during proteasome inhibitor-induced apoptosis in thyroid carcinoma cells. British journal of pharmacology 2008;155(5):655-60.
55. Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, et al. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. The EMBO journal 1997;16(16):4887-96.
56. Takayama S, Reed JC. Molecular chaperone targeting and regulation by BAG family proteins. Nature cell biology 2001;3(10):E237-41.
57. Takayama S, Xie Z, Reed JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. The Journal of biological chemistry 1999;274(2):781-6.
58. Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, et al. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. The Journal of biological chemistry 2005;280(46):38673-81.
59. Arndt V, Daniel C, Nastainczyk W, Alberti S, Hohfeld J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Molecular biology of the cell 2005;16(12):5891-900.
60. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Molecular and cellular biology 1999;19(6):4535-45.
61. Chen CY, Chiou SH, Huang CY, Jan CI, Lin SC, Tsai ML, et al. Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model. Journal of biomedical science 2009;16:100.
62. Syken J, De-Medina T, Munger K. TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci U S A 1999;96(15):8499-504.
63. Ahn BY, Trinh DL, Zajchowski LD, Lee B, Elwi AN, Kim SW. Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 2010;29(8):1155-66.
64. Liu BQ, Du ZX, Zong ZH, Li C, Li N, Zhang Q, et al. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells. Autophagy 2013;9(6):905-16.
65. Niu G, Zhang H, Liu D, Chen L, Belani C, Wang HG, et al. Tid1, the mammalian homologue of Drosophila tumor suppressor Tid56, mediates macroautophagy by interacting with Beclin1-containing autophagy protein complex. The Journal of biological chemistry 2015.
66. Min Y, Xu W, Liu D, Shen H, Xu Y, Zhang S, et al. Earle's balanced salts solution and rapamycin differentially regulate the Bacillus Calmette-Guerin-induced maturation of human dendritic cells. Acta biochimica et biophysica Sinica 2013;45(3):162-9.
67. Boiani M, Daniel C, Liu X, Hogarty MD, Marnett LJ. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737. The Journal of biological chemistry 2013;288(10):6980-90.
68. Kong DH, Zhang Q, Meng X, Zong ZH, Li C, Liu BQ, et al. BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78. Biochimica et biophysica acta 2013;1833(12):3245-53.
69. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology 2010;11(8):579-92.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top