跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴成奇
研究生(外文):Cheng-Chi Tai
論文名稱:射頻磁控濺鍍製備鎳/氧化鋁陶金薄膜及其特性之研究
論文名稱(外文):Characterization of R.F Magnetron Sputter Deposited Ni/Al2O3 Cermet Thin Films
指導教授:邱國峰邱國峰引用關係
指導教授(外文):kuo-Feng Chiu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料與製造工程所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:108
中文關鍵詞:陶金薄膜自生加熱溫度電阻係數氣體流量感測器
外文關鍵詞:TCRflow sensorcermet thin filmsself-heating
相關次數:
  • 被引用被引用:1
  • 點閱點閱:541
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本研究以射頻磁控濺鍍陶金薄膜,探討鎳/二氧化鋁陶金薄膜(cermet thin films)在不同自我加熱(self heating)溫度下性質分析,將鎳(1×1×0.1cm3)的方型薄片對稱貼於氧化鋁(直徑5cm厚度0.5cm)上成一複合靶,在氬氣氣氛下改變貼覆鎳片的數目並濺鍍於二氧化矽/矽基材上,製備不同鎳含量之鎳/二氧化鋁莫耳比陶金薄膜。所製備之初始與不同鎳/二氧化鋁面積比之陶金薄膜運用臨場偏壓製程與真空退火熱處理方式(700K,2hr)薄膜試片於材料性質分析、電性分析及不同溫度(25℃至125℃)下進行對導電率及加熱能量的量測,藉以探討薄膜中鎳含量的增加對金屬/絕緣體性質變遷的影響。此外,使用場發射電子顯微鏡(FESEM)觀察薄膜表面變化以及低掠角X光繞射觀察薄膜的相變化,研究發現濺鍍之薄膜在真空退火熱處理後具有晶粒聚集、再結晶及氧化鎳的產生,以及製程的改變對薄膜進行調質,根據薄膜所表現的電阻和電性,我們探討薄膜厚度、不同鎳含量以及基座偏壓對鎳/二氧化鋁陶金薄膜溫度電阻係數(temperature coefficient of resistance, TCR)之影響,使鎳/二氧化鋁陶金薄膜能運用於氣體流量感測元件與微型加熱元件的領域上。
Ni/Al2O3 cermet thin films have been fabricated by rf magnetron sputter deposition, and characterized under self-heating. A composite target, consist of small Ni sheets (1×1×0.1cm3) attached on Al2O3 plate (dia. 5cm) was used. The sputtering was carried out in Ar atmosphere. The Ni/Al2O3 cermet thin films with different Ni atomic percents were prepared on SiO2/Si substrates. By changing the number of nickel sheets, the Ni /Al2O3 mole ratios of the films can be controlled. Resistivity for the films with different Ni/Al2O3 mole ratios was measured within a period of temperature ( 25℃ to 125℃), and the temperature coefficient of resistivity (TCR) was calculated. It was found that the film properties changed from metal to insulator with the decrease of Ni percents. The surface morphology and microstructures of as-deposited and in-situ bias and vacuum annealed (700 K,2hr) thin films were observed by scanning electron microscope (SEM). The film crystallography was characterized by grazing angle X-ray diffraction (XRD). The feasibility of applying the the Ni/Al2O3 cermet films on flow sensors and mico-heating devices was discussed.
總目錄
致謝
中文摘要......................................................................i
英文摘要.....................................................................ii
總目錄.......................................................................ii
表目錄......................................................................vii
圖目錄.....................................................................viii
第一章 緒論及研究動機.........................................................1
1.1 陶金薄膜概論..............................................................1
1.2 氣體感測器概論............................................................3
1.3 研究動機..................................................................7
第二章 理論與文獻回顧.........................................................9
2.1 陶金薄膜性質..............................................................9
2.2 陶金薄膜運用.............................................................10
2.2.1 電阻材料...............................................................10
2.2.2 加熱材料...............................................................13
2.2.2 感測材料...............................................................14
2.3 射頻磁控濺鍍法之原理.....................................................16
第三章 實驗方法..............................................................22
3.1 靶材製備.................................................................22
3.2 薄膜製備.................................................................23
3.3 薄膜物理性質量測.........................................................26
3.3.1 薄膜厚度量測(α-step).................................................26
3.3.2 掠角X光繞射儀(Grazing Incidence X-ray Diffractometer)................26
3.3.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope;FESEM)......................................................................27
3.3.4能量散佈光譜儀(Energy dispersive spectrometer;EDS)...................28
3.3.5 掃瞄式探針顯微鏡(Scanning Probe Microscope;SPM).....................29
3.4 薄膜電性量測.............................................................30
3.4.1 四點探針(Four Point Probe.............................................30
3.4.2 溫度電阻係數(TCR)量測................................................32
3.4.3 焦耳加熱性質(joule-heating)量測......................................33
3.4.4 電流電壓曲線(I-V curve)量測..........................................33
3.5 薄膜流量計製作與測試.....................................................33
第四章 實驗結果與討論........................................................42
4.1 膜厚量測.................................................................42
4.2 結晶性質.................................................................43
4.3 表面結構.................................................................46
4.3.1 薄膜組成分析...........................................................46
4.3.2 真空熱退火處理之效應...................................................49
4.3.3 臨場偏壓製程之效應.....................................................51
4.4 表面特性.................................................................51
4.4.1 真空熱退火處理之效應...................................................52
4.4.2 臨場偏壓製程之效應.....................................................52
4.5 電阻率與溫度電阻係數.....................................................53
4.5.1 電阻率.................................................................54
4.5.2 溫度電阻係數...........................................................55
4.6 電性量測............................................................. ...57
4.6.1電流電壓曲線............................................................57
4.6.2薄膜加熱性質曲線........................................................59
4.7 氣體感測性質量測.........................................................61
第五章 結論..................................................................87
5.1 薄膜鎳含量之影響.........................................................87
5.2 真空退火及臨場偏壓之影響.................................................87
5.3 感測性質評估.............................................................88
第六章未來研究方向...........................................................90
第七章參考文獻...............................................................91
表目錄
表1.1氣體感測器之類型、檢測原理、檢測氣體及優缺點.............................5
表2.1常見之薄膜電阻材料種類..................................................12
表3.1薄膜試片種類之定義......................................................25
表3.2四點探針電阻率換算修正因子對照表........................................32
表4.1鎳微晶於初始濺鍍、臨場偏壓製程與真空退火熱處理所估算的晶粒尺寸大小......44
表4.2初始濺鍍薄膜、不同臨場偏壓製程與經真空退火熱處理以後之薄膜的Ni/Al2O3組成mole比.......................................................................47
表4.3真空退火熱處理以後之薄膜的表面及表面析出物之Ni/Al2O3組成mole比..........47
表4.4各薄膜試片之I-V curve 曲率..............................................59
表4.5陶金薄膜試片RA1到RA6對應於0.35W、0.70W與1.4W Joule heating之起始電壓....60
圖目錄
圖2.1 (a)陶瓷溼度感測器結構(b)陶瓷溼度感測器特性曲線.........................18
圖2.2 傳統熱線型流速計其主要結構為一熱阻式加熱絲,一般為白金熱阻絲,尺寸約為直徑10μm 長 1mm。..............................................................19
圖2.3 電子、離子、電中性原子在陰極靶材和陽極之間的運動行為,延虛線運動的電子為濺鍍靶提供之電子,延實線運動的電子為電中性原子被電子撞擊發生離子化時所射出的電子...........................................................................20
圖2.4濺渡靶上裝配一組對稱的永久磁鐵,通稱磁控濺鍍靶(magnetron sputter target),使靶的表面產生一個限制附近電子運動的磁場,被限制住的電子會延著磁力線在靶的表面作跳躍般的運動(非一般無磁場作用下的直線運動),靶的表面電子密度上升以及延長電子運動路徑兩種因素加成影響結果下,使的離子密度因為離化效率的增加而上升,進一步提高了濺鍍沈積的速率...........................................................21
圖3.1 不同Ni/Al2O3面積百分比之複合靶貼覆位置配置圖...........................35
圖3.2 磁控濺鍍系統架構圖.....................................................36
圖3.3 實驗設計流程圖.........................................................37
圖3.4 (a)為Ni-O二元相圖(b)為Al-O二元相圖....................................38
圖3.5 (a)四點探針示意圖(b)薄膜厚度修正因子圖解(c)薄膜幾何尺寸修正因子圖示(d)探針與試片邊緣距離修正因子圖示.................................................39
圖3.6 薄膜溫度電阻量測示意圖.................................................40
圖3.7 陶金薄膜對與氣體流量感測架構示意圖.....................................41
圖4.1不同鎳/二氧化鋁面積百分比之複合靶(Ni/Al2O3 target) 在固定工作壓力下及Gun Power 100W對薄膜沈積速率圖...................................................63
圖4.2不同之鎳/二氧化鋁面積百分比於不同製程下,在固定工作壓力下及Gun Power 100W對薄膜沈積速率圖.............................................................63
圖4.3不同製程之RA1薄膜使用低掠角XRD觀察從20o到85o薄膜之XRD繞射圖譜。.........64
圖4.4不同製程之RA2薄膜使用低掠角XRD觀察從20o到85o薄膜之XRD繞射圖譜。.........64
圖4.5不同製程之RA3薄膜使用低掠角XRD觀察從20o到85o薄膜之XRD繞射圖譜。.........65
圖4.6不同製程之RA4薄膜使用低掠角XRD觀察從20o到85o薄膜之XRD繞射圖譜。.........65
圖4.7圖4.7不同製程之RA6薄膜使用低掠角XRD觀察從20o到85o薄膜之XRD繞射圖譜。....66
圖4.8在固定工作壓力下,沈積(a) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6初始濺渡薄膜之SEM平面圖................................................................67
圖4.9在固定工作壓力下,沈積(a ) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6初始濺渡薄膜經過真空退火熱處理700K,2hr(VAT.)之SEM平面圖.............................68
圖4.10在固定工作壓力並導入臨場偏壓50V,沈積(a ) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6之SEM平面圖.......................................................69
圖4.11在固定工作壓力並導入臨場偏壓100V,沈積(a ) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6之SEM平面圖.......................................................70
圖4.12初始濺鍍與真空退火熱處理700K(2hr)之陶金薄膜自由能差示意圖,(a)為低鎳金屬含量RA1~ RA3系統自由能差(b)為高鎳金屬含量RA3~ RA6系統自由能差示意圖...........................................................................71
圖4.13 在固定工作壓力下,沈積(a ) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6初始濺渡薄膜之SEM平面圖............................................................72
圖4.14 在固定工作壓力下,沈積(a ) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6初始濺渡薄膜經過真空退火熱處理700K,2hr (VAT)之SPM表面圖...........................73
圖4.15 在固定工作壓力並導入臨場偏壓-50V,沈積(a ) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6之SPM表面圖.......................................................74
圖4.16在固定工作壓力並導入臨場偏壓-100V,沈積(a ) RA1、(b) RA2、(c) RA3、(d) RA4、(e)RA6之SPM表面圖.......................................................75
圖4.17不同之鎳/二氧化鋁面積百分比之薄膜於於不同製程下,對應不同之片電阻值比較圖...........................................................................76
圖4.18不同薄膜(RA1 、RA4 、RA6)於30℃到120℃持續升溫過程,溫度對電阻之影響曲線...........................................................................76
圖4.19不同之Ni/Al2O3 莫耳比所對應之TCR值.....................................77
圖4.20於不同之Ni/Al2O3 莫耳比之初始沈積與臨場偏壓製程,薄膜所對應之TCR值比較圖...........................................................................77
圖4.21於不同之Ni/Al2O3 莫耳比之初始沈積與真空退火熱處理薄膜,所對應之TCR值...........................................................................78
圖4.22不同製程之RA1薄膜於0V到10V穩定上升過程所得之電流對電壓之曲線...........79
圖4.23(a)RA1-as與(b)RA1-VAT薄膜於0V到10V穩定上升過程所得之電流對電壓之曲線以根據Fowler Norheim equation fitting圖..........................................79
圖4.24不同製程之RA2薄膜於0V到10V穩定上升過程所得之電流對電壓之曲線...........80
圖4.25不同製程之RA3薄膜於0V到10V穩定上升過程所得之電流對電壓之曲線...........80
圖4.26不同製程之RA4薄膜於0V到10V穩定上升過程所得之電流對電壓之曲線...........81
圖4.27不同製程之RA6薄膜於0V到10V穩定上升過程所得之電流對電壓之曲線...........81
圖4.28 RA1薄膜於固定0.35W、0.7W與1.4W加熱功率下加熱120秒後關閉電源之升降溫區線圖...........................................................................82
圖4.29 RA3薄膜於固定0.35W、0.7W與1.4W加熱功率下加熱120秒後關閉電源之升降溫區線圖...........................................................................82
圖4.30 RA6薄膜於固定0.35W、0.7W與1.4W加熱功率下加熱120秒後關閉電源之升降溫區線圖...........................................................................83
圖4.31固定加熱功率(1.4W)之不同製程的RA1薄膜試片對氣體流量10 L/min N2之敏感程度...........................................................................83
圖4.32固定加熱功率(1.4W)之不同製程的RA3薄膜試片對氣體流量10 L/min N2之敏感程度...........................................................................84
圖4.33固定加熱功率(1.4W)之不同製程的RA6薄膜試片對氣體流量10 L/min N2之敏感程度...........................................................................84
圖4.34 RA1薄膜試片於不同加熱功率對氣體流量10 L/min N2之敏感程度..............85
圖4.35 RA3薄膜試片於不同加熱功率對氣體流量10 L/min N2之敏感程度..............85
圖4.36 RA6薄膜試片於不同加熱功率對氣體流量10 L/min N2之敏感程度..............86
[1] 陶瓷技術手冊(下),黃啟祥,林江財,713-715
[2] Ceramics,Ceramic-Metal Systems” UNNMANN’S ENCYCLOPEDIA OF INDUSTRIAL CHEISTRY 55-78
[3] Arshak, K.I.; McDonagh, D.; Durcan, M.A. “Development of new capacitive strain sensors based on thick film polymer and cermet technologies“ Sensors and Actuators A: Physical Volume: 79, Issue: 2, February 1, 2000, pp. 102-114
[4] C.A. Arancibia-Bulnes , J.C. Ruiz-Suarez “ Scaling analysis of the optical properties of cermets at oblique incidence “ Solar Energy Materials and Solar Cells 52 (1998) 199-206
[5] Inagaki, Masahiko; Hozumi, Atsushi; Okudera, Hiroki; Yokogawa, Yoshiyuki; Kameyama, Tetsuya, Thin Solid Films Volume: 382, Issue: 1-2, February 1, 2001, pp. 69-73
[6] D. J. Lloyd, “Particulate reinforcement composites produced bymolten metal mixing” in “High Performance Composites for the1990’s” , Edited by S. K. Das, C. P. Ballard and F. Marikar, TheMinerals, Metals & Materials Society ,1991
[7] Neil Gershenfeld;Watt W.Webb;Jeffrey E.VanCleve, all of Ithaca,N.Y.;Joseph V.Mantese,Washington,Mich;Eric T.Swartz,Tuscon,Ariz“Percolating Cermet Thin Film Thermistor” United States Patent 4906968
[8] P. Muralt, J.P. Seidel, Thin film sputter deposition for hybrid applications, Vacuum 41 (4-6) (1990) 1400-1402.
[9] M.Gadenne, P.Gadenne, J.C.Martin, C.Sella“Composition and electrical properties of Au-Al2O3 cermet thin films : a critical study” Thin Solid films, 221(1992) 183 - 190.
[ 0] Cho, Yu-Suk; Choi, Gyu-Seok; Hong, Sang-Young; Kim, Dojin “Nickel oxide sol–gel films from nickel diacetate for electrochromic applications “Volume: 243, Issue: 1, August, 2002, pp. 224-229
[ 1] Fumishige,Miyata;Masahiro Tsuji “Ceramic heater”United States Patent 6230273.
[ 2] D. S. Wuu, C. C. Chan, R. H. Horng, W. C. Lin, S.L. Chiu, and Y.Y. Wu, Applied Surface Science, 144–145, 315–318 (1999).
[13] M.T.Brogan and P.F.Monaghan, “Termal simulation of quartz tube infra- red heaters used in the processing of thermoplastic composites “ Composites Part A 27A(1996)301-306.
[ 4] M. A. Ochando and A. P. Navarro “High sensitivity bollometers development “
Rev. Sci. instrum. 63, 1992
[ 5] 2C. H. Mastrangelo and R. S. Muller, Transducers ’91 ~IEEE, New York,1991, p. 245.
[ 6] A. M. Robinson, P. Haswell, R. P. W. Lawson, and M. Parameswaran,Rev. Sci. Instrum. 63, 2026 ~1992.
[ 7] P. P. S. Juneja, M.Scthesis, Simon Fraser University, Burnaby, BritishColumbia, Canada, 1993.
[18] D. Vincenzi, M.A. Butturia, M. Stefancich, C. Malagu, V. Guidi, M.C. Carottaa, G. Martinelli, V. Guarnieri, S. Brida, B. Margesin, F. Giacomozzi, M. Zen,A.A. Vasiliev, A.V. Pisliakov “Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques “ Thin Solid Films 391 2001 288-292
[19] Shan-Jun Liu, Matthieu Tubino “A thermistor as a sensor in gas phase flow injection analysis “Analytica Chimica Acta 366 (1998) 5-10
[20] Xinxin Li, Wing Yin Lee, Man Wong, Yitshak Zohar “Gas flow in constriction microdevices ” Sensors and Actuators 83 (2000) 277–283
[21] Z.G.Zhou, Z.L.Tang, Z.T.Zhang, W.Wlodarski, “ Perovskite oxide of PTCR ceramics as chemical sensor “ Sensors and Actuators B77 (2001) 22–26
[22] Shih-Ta Hung, Shwin-Chung Wong, Weileun Fang “The development and application of microthermal sensors with a mesh-membrane supporting structure"Sensors and Actuators 84 2000 70–75
[23]J.E. Sundeen, R.C. Buchanan ”Electrical properties of nickel-zirconia cermet films for temperature an flow sensor applications “ Sensors and Actuators A 63 (1997) 33–40
[24] S.Park, Seunghyun Kim, Sunghyun Kim, Y. Kim “A flow direction sensor fabricated using MEMS technology and its simple interface circuit” Sensors and Actuators B 91 (2003) 347–352
[25] J.E. Sundeen, R.C. Buchanan “Thermal sensor properties of cermet resistor flms on silicon substrates “ Sensors and Actuators A 90 (2001) 118-124
[26] Ullmann’s Encyclopedia of Industrial Chemistry A6 55-78
[27] 蔡嬪嬪,曾明漢, “氣體感測器之簡介、應用及市場”, 材料與社會, 第68 期 (1992) 50.
[28] S, Park, S. Kim, S. Kim, Y. Kim “ A flow direction sensor fabricated using MEMS technology and its simple interface circuit” Sensor and Actuators B 91 (2003) 347-352
[29] 許志雄,科學發展2004年3月,375期,28-33
[30] M. Gadennel, O. Schneegans, F. Houze, P. Chretien, C. Desmarest,J. Sztern, P. Gadenne “ First AFM observation of thin cermet "lms closeto the percolation threshold using a conducting tip” Physica B 279 (2000) 94-97
[31] Larry Bos, "Performance of Thin-Film Chip Resistors", Transactions on
components and manufacturing technology,IEEE,Vol. 17,No. 3,Sep 1994.
[32] M. Al khalfioui, A. Michez, A. Giani, A. Boyer, A. Foucaran “Anemometer based on Seebeck effect” Sensors and Actuators A 107 (2003) 36–41
[33] B. Lee “The progress and prospect of middle/high temperature evacuated tubular solar collector “Renewable Energy 24 (2001) 539–544
[34] C.J.Backhouse, G.Este, J.C.Sit, S.K.Dew, M.J.Brett “ WSiX thin films for resistors “ Thin Solid Films 311 (1997) 299-303
[35] Y.E. Wu, K. Chen, C.W. Chen, K.H. Hsu “Fabrication and characterization of thermal conductivity detectors (TCDs) of different flow channel and heater designs ” Sensors and Actuators A 100 (2002) 37–45
[36] J-W. Lee, T. E. Schlesinger, A. K. Stamper, M. Migliuolo, D. W. Greve, and D. E. Laughin, “Characterization of yttria-stabilized zirconium oxide buffer layers forhigh-temperature superconductor thin films”, J. Appl. Phys. 64(11), 1 (1988)
[37] T.Lenihan,"Embedded Thin Film Resistors,Capacitors and Inductors in Flexible Polyimide Films",IEEE Electronic Components and Technology Conference,1996.
[38] Haruo Sorimachi and Tadao Hosoya,"Properties of sputtered W-Si-N thin-film resistors",pp.596-603,IEEE,Japan.
[39] 曲喜新,電子薄膜材料,科學出版社,1997.
[40] S.R. Syrtsov,*, V.N. Shut, I.F. Kashevicha, A.S. Sedlovsky, B.E.Watts, ”Positive temperature coefficient of resistivity in thin films of barium titanate” Materials Science in Semiconductor Processing 5 (2003) 223–225
[41] LEON I. MAISSEL REINHARD GLANG,”Handbook of thin film Technology ” .pp.18-3-18-14
[42].J.Moulson, J.M.Herbert, ‘ Electroceramics Materials• Properties• Applications’ (1991) 139-147
[43] Ceramic heater”Miyata,Fumishige ,Koyama,Tatsuya,Okuda,SeikoUnited States Patent 6265700
[44] Fumishige,Miyata;Masahiro Tsuji “Ceramic heater”United States Patent 6230273.
[45] T.G. Nenov and S.P. Yordanov,“Ceramic sensor technology and applications”, Technomic Publishing Company, Inc.,Pennsylvania (1996)chap.4.
[46] L.V. King “On the Convention of Heat from Small Cylinders in a Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires with Application to Hot Wire Anemomrtry” Proc. Roy. London A, 90, 563 (1914)
[47] K. K. Schuegraf, Handbook of Thin-Film Deposition Processes and Techniques, Noyes Publications, 1988.
[48] D. Simwonis, F. Tietz , D. Stover “ Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells “Solid State Ionics 132 (2000) 241–251
[49] N. A. Gershenfeld, J. E. VanCleve, W. W. Webb, H.E. Fishcher, J.Appl. Phys. 64(9), 1 November 1988
[50] CERAMIC INDUSTRY MATERIALS HANDBOOK, p140, January 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top