跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈儒
研究生(外文):CHEN, YING-JU
論文名稱:添加石墨烯以增進剪切增稠液體防護性能之研究
論文名稱(外文):Research of the Protective Materials Containing Shear- thickening-fluid with Graphene Composites
指導教授:劉益銘
指導教授(外文):LIU, YIH-MING
口試委員:胡文華葛明德劉益銘張章平林宏文
口試委員(外文):HU, WEN-HWAGER, MING-DERLIU, YIH-MINGCHANG, CHANG-PINGLIN, HONG-WEN
口試日期:2016-07-13
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:剪切增稠流體流變石墨烯防護效果彈道測試
外文關鍵詞:shear thickening fluidrheological propertygrapheneimpact resistancebullet impacts
相關次數:
  • 被引用被引用:1
  • 點閱點閱:664
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究是將剪切增稠流體(Shear Thickening Fluid, STF)製備為防護材料,以 達到抗穿刺以及防彈衣之輕量化之目的。STF為非牛頓流體,其黏度會隨著剪切 速率增加而上升,當STF受到衝擊時,會因剪切力作用使流體轉變成固體,以阻 擋及分散衝擊能量,並減輕傷害。這是一種與傳統截然不同的防護材料,除擁有 傳統材料的防護功能外,具備了輕巧及可撓曲的特殊功能,對於頸部、手、腳及 肘部等關節部位更提供了有別於傳統防護材料的保護性及靈活性。
本研究分別改變STF之溶質(二氧化矽)之粒徑及溶劑(聚乙二醇、乙二醇 及丙三醇)之配比及固體含量,以行星機及三滾軸混練機穩定分散,最後以流變 儀檢測其流變性質,並以液體黏度與剪切速率作圖觀察其變化,找出製備剪切增 稠流體之最佳參數組合。為了提升性能,更進一步添加改質後的石墨烯,探討其 流變性質的變化。
在性能測試方面,將Kevlar浸漬在剪切增稠液體及將剪切增稠液體封裝在蜂 巢紙六角孔洞內等方式,進行防穿刺及防彈測試。防穿刺部分,以落錘測試機進 行測試,另防彈測試部分在本院彈道館進行九公釐手槍彈(初速達350±10 m/s) 測試,以油泥之凹陷深度判別其防護效果,觀察不同成分的奈米複合防護材料之 抗衝擊能力,探討其臨界剪切速率對防護效果的影響,建立剪切增稠液體臨界剪 切速率及黏度對不同型態的衝擊下防護能力之關聯性。
Shear thickening fluid (STF) is a colloidal suspension of solid particles suspended in fluid and exhibits the shear thickening phenomenon resulting in large, sometimes discontinuous increase in viscosity above a critical shear rate. This particular rheological property of STFs can be utilized to improve their impact resistance and can be used in many protective applications. However, the impact resistance and threats including puncture, stab and 9 mm bullet impacts (muzzle velocity of 350 ± 10 m/s) varies from the low velocity range to high velocity range. Therefore, the effect of the magnitude of critical shear rate on impact performance is investigated in this research. The critical shear rate of STF is adjusted by varying the size and content of silica particles as well as the solvent composition. In addition, the graphene is also added into STFs to change their rheological property which in turn changing their protective properties. The results of this research can aid in the development of a broad range of protective materials for both consumer and military applications.
誌謝 ............................................................................................................................... ii
摘要 .............................................................................................................................. iii
Abstract......................................................................................................................... iv
目錄 ............................................................................................................................... v
表目錄 ........................................................................................................................ viii
圖目錄 .......................................................................................................................... ix
1. 緒論....................................................................................................................... 12
1.1 前言.....................................................................................................................12
1.2 研究動機.............................................................................................................13
1.3 研究目的.............................................................................................................14
2. 文獻回顧............................................................................................................... 15
2.1 防彈衣起源.........................................................................................................15
2.1.1 防彈纖維結構...............................................................................................15
2.1.2 防彈纖維作用原理.......................................................................................16
2.2 剪切增稠液體原理.............................................................................................18
2.3 影響剪切增稠液體因素.....................................................................................20
2.4 抗彈纖維浸漬剪切增稠液體作用.....................................................................23
2.5 石墨烯對剪切增稠液體之分散作用.................................................................25
2.6 衝擊作用原理.....................................................................................................28
2.6.1 準靜態穿刺測試...........................................................................................28
2.6.2 彈道測試.......................................................................................................29
3. 實驗....................................................................................................................... 30
3.1 實驗流程.............................................................................................................30
3.2 實驗藥品及儀器.................................................................................................31
3.2.1 實驗藥品.......................................................................................................31
3.2.2 實驗儀器.......................................................................................................32
3.3 製備改質石墨烯.................................................................................................32
3.4 製備剪切增稠液體.............................................................................................33
3.5 流變儀檢測.........................................................................................................34
3.6 纖維浸漬剪切增稠液體.....................................................................................35
3.7 落錘穿刺測試.....................................................................................................36
3.8 九公釐手槍彈道測試.........................................................................................37
4. 結果與討論............................................................................................................39
4.1 改善剪切增稠液體分散性之研究.....................................................................39
4.1.1 混拌方式對液體流變性質之影響...............................................................39
4.1.2 添加分散劑對液體流變性質之影響........................................................... 41
4.2 剪切增稠液體參數之研究.................................................................................42
4.2.1 SiO2固體含量對剪切增稠液體流變性之影響 ............................................ 42
4.2.2 SiO2粒徑及溶劑配比對剪切增稠液體流變性之影響 ................................ 44
4.2.3 添加石墨烯對剪切增稠液體流變性之影響...............................................48
4.3 剪切增稠液體複合材料抗衝擊測試.................................................................51
4.3.1 落錘穿刺測試...............................................................................................52
4.3.2 九公釐手槍彈道測試................................................................................... 57
5. 結論........................................................................................................................63
6. 未來展望................................................................................................................65
參考文獻 ..................................................................................................................... 66
自傳 ............................................................................................................................. 70
[1] Lotysz, S. “Mnich Wynalazca,” Polonia, Vol. 13, pp. 68-71, Vol. 14, pp.64-67, 2007.
[2] http://www.airitilibrary.com/searchdetail.aspx?DocIDs=02539721-200608-27-8-80-4- a 華藝線上圖書館。
[3] Zhang, H., Zhang, J., Chen, J., Hao, X., Wang, S., Feng, X., and Guo, Y., “Effects of Solar UV Irradiation on the Tensile Properties and Structure of PPTA Fiber,” Polymer Degradation and Stability, Vol. 91, pp. 2761-2767, 2006.
[4] Yang, F., Bai, Y., Min, B. G., Kumar, S., and Polk, M. B., “Synthesis and Properties of Star-Like Wholly Aromatic Polyester Fibers,” Polymer, Vol. 44, pp. 3837-3846, 2003.
[5] Liu, S., Wang, J., Wang, Y., and Wang, Y., “Improving the Ballistic Performance of Ultra High Molecular Weight Polyethylene Fiber Reinforced Composites Using Conch Particles,” Materials and Design, Vol. 31, pp.1711-1715, 2010.
[6] 黃英,玻璃鋼/複合材料,第六期,第35-39頁,1998。
[7] Chassenieux, C., Nicolai, T., and Benyahia, L., “Rheology of Associative Polymer Solutions,” Current Opinion in Colloid & Interface Science, Vol. 16, pp. 18-26, 2010.
[8] Ebagninin, K. W., Benchabane, A., and Bekkour, K., “Rheological Characterization of Poly (Ethylene Oxide) Solutions of Different Molecular Weights,” Journal of Colloid and Interface Science, Vol. 336, pp. 360-367, 2009.
[9]伍秋美、阮建明、周忠誠、黄伯云,“SiO2/聚乙二醇非牛頓流體流變性能研究”物 理化學學報,第二十二卷,第一期,第48-52 頁,2006。
[10] Zhang, X. Z., Li, W. H., and Gong, X. L., “The Rheology of Shear Thickening
Fluid(STF) and the Dynamic Performance of an STF-Filled Damper,”
IOPscience, Vol. 17, pp. 1-7, 2008.
[11] Xu, H., and Liao, S. J., “Series Solutions of Unsteady Magnetohydrodynamic Flows of Non-Newtonian Fluids Caused by an Impulsively Stretching Plate,” J. Non-Newtonian Fluid Mech, Vol. 129, pp. 46-55, 2005.
[12] Choia, H. J., Vinay III, S. J., and Jhon, M. S., “Rheological Properties of Particle Suspensions in a Polymeric Liquid,” Polymer, Vol. 40, pp. 2869-2872, 1999.
[13] Wetzel, E. D., Lee, Y. S., Egres Jr., R. G., Kirkwood, K. M., Kirkwood, J. E., and
Wagner, N. J., “The Effect of Rheological Parameters on the Ballistic Properties of Shear Thickening Fluid (STF)-Kevlar Composites,” in Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, Columbus, OH, June, pp. 13-17, 2004.
[14] Hassan, T. A., Rangari, V. K., and Shaik J., “Synthesis, Processing and Characterization of Shear Thickening Fluid (STF) Impregnated Fabric Composites,” Materials Science and Engineering A, Vol. 527, pp. 2892-2899, 2010.
[15] Lee, Y. S., Wetzel, E. D., and Wagner, N. J., “The Ballistic Impact Characteristics of Kevlar Woven Fabrics Impregnated with a Colloidal Shear Thickening Fluid,” Journal of Materials Science, Vol. 38, pp. 2825-2833, 2003.
[16] Lee, Y. S., and Wagner, N. J., “Rheological Properties and Small Angle Neutron Scattering of a Shear Thickening, Nanoparticle Dispersion at High Shear Rates,” Ind. Eng. Chem. Res, Vol. 45, pp. 7015-7024, 2006.
[17] Mahfuz, H., Clements, F., Rangari, V., Dhanak, V., and Beamson, G., “Enhanced Stab Resistance of Armor Composites with Functionalized Silica Nanoparticles,” Journal of Applied Physics, Vol. 105, pp. 064307, 2009.
[18] Houghton, J. M., Schiffman, B. A., Kalman, D. P., Wetzel, E. D., and Wagner, N. J., “Hypodermic Needle Puncture of Shear Thickening Fluid (STF)-Treated Fabrics,” To Appear in Proceedings of SAMPE, 2007.
[19] Colin D. Cwalina, Richard D. Dombrowski, Charles J. McCutcheon, Eric L. Christiansen,and Norman J. Wagner., “MMOD Puncture Resistance of EVA Suits with Shear Thickening Fluid(STF) – Armortm Absorber Layers,” Procedia Engineering 97-104, 2015.
[20] Hassan, T. A., Rangari, V. K., and Jeelani, S., “Sonochemical Synthesis and Rheological Properties of Shear Thickening Silica Dispersions,” Ultrasonics Sonochemistry, Vol. 17, pp. 947-952, 2010..
[21] Tan, V.B.C., Tay, T.E., and Teo, W.K., “Strengthening Fabric Armour with Silica Colloidal Suspensions,” International Journal of Solids and Structures, Vol. 42, pp. 1561-1576, 2005.
[22] Idzkowska, A., and Szafran, M., “The Effect of Nano-SiO2 Particle Size Distribution on Rheological Behaviour of Shear Thickening Fluids,” Archives of Met allurgy and Materials, Vol. 58, pp. 1323-1326, 2013.
[23] Qian, Chen., Wei, Zhu., Fang, Ye., Xinglong, Gong., Wanquan, Jiang., and Shouhu, Xuan1., “pH Effects on Shear Thickening Behaviors of Polystyrene- Ethylacrylate Colloidal Dispersions,” Materials Research Express,Vol. 15303, pp. 1-12, 2014.
[24] Kejing, Yu., Haijian, Cao,. Kun, Qian,.Xiaofei, Sha., and Yanping, Chen., “Shear- Thickening Behavior of Modified Silica Nanoparticles in Polyethylene Glycol, ” J Nanopart Res,Vol. 14, pp. 727-735, 2014.
[25] 吳惠敏、王靖、付翔、丁娟、傅雅琴,“奈米 SiO2/聚乙二醇非牛頓流體的 剪切增稠性能的實驗研究”浙江理工大學學報,第 30 卷,第 5 期,第 658- 662 頁,2013。
[26] Lei Shana, Yu Tiana, Jile Jiangb, Xiangjun Zhanga, Yonggang Menga., “Effects of pH on shear thinning and thickening behaviors of fumedsilica suspensions,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 454, pp.1-7, 2015.
[27] A. Haris, H.P. Lee, T.E. Tay, V.B.C. Tan., “Shear thickening fluid impregnated ballistic fabric composites for shock wave mitigation,” International Journal of Impact Engineering, Vol. 80, pp.143-151, 2015.
[28] Wonjin Na, Hyunchul Ahn, Sungjin Han, Philip Harrison, Jong Kyoo Park, Euigyung Jeong, Woong-Ryeol Yu, “Shear behavior of a shear thickening fluid‐impregnated aramid fabrics at high shear rate, ” Composites Part B, doi:10.1016/j.compositesb, 2016.
[29] Xiaofei Sha, Kejing Yu, Haijian Cao, Kun Qian., “Shear Thickening Behavior of anoparticle Suspensions with Carbon Nanofillers,” J Nanopart Res, 15:1816, 2013.
[30] Hamid Reza Baharvandi, Morteza Alebooyeh, Masoud Alizadeh, Peiman Khaksari, Naser Kordani., “Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluidtreated Twaron(R) composite, ” Journal of Industrial Textiles, 0(00) 1–22, 2015.
[31] Edison Haro Albuja, Jerzy A. Szpunar, Akindele G. Odeshi., “Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar(R) fabrics impregnated with shear thickening fluid,” Composites: Part A, doi: 10.1016/j.compositesa, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top