跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊忠
研究生(外文):Jiun-Jung Chen
論文名稱:壓電發電元件自供電同步切換介面電路研究
論文名稱(外文):Improved circuit design on self-powered synchronized switching techniques for piezoelectric energy harvesting
指導教授:吳文中
指導教授(外文):Wen-Jong Wu
口試委員:陳昭宏陳信樹
口試委員(外文):Jau-Horng ChenHsin-Shu Chen
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:83
中文關鍵詞:能量擷取自供電同步切換介面電路SSHI微機電
外文關鍵詞:Energy harvesting systemSelf-powerSynchronized switching techniquesSynchronized Switching Harvesting on an InductorMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來M2M (Machine to Machine)與互聯網(Internet of Things, IOT)概念越來越受到業界關注,為了收集各種環境的狀態,其感測器需求量將會大增,然而隨著半導體技術的進步,越來越多感測器只需要損耗幾十微瓦的功率。為了解決感測器供電問題,目前通過壓電能量擷取技術,能將環境中的振動能轉換成電能,可以提供幾十至幾百微瓦的功率,其中利用同步切換介面電路,能有效提升壓電能量擷取系統的功率。
本論文提出一種利用壓電元件所產生的電能,來提供同步切換介面電路操作,達到自供電設計。電路架構由峰值檢知器、比較器與數位開關組成,利用峰值檢知器與比較器產生開關控制訊號。以微機電製程製作的微壓電發電元件輸出功率通常小於100 μW,較複雜電路設計可能無法利用壓電元件來驅動,然而自供電開關切換技術架構因設計簡單,較適用以微機電製程製作的微壓電發電元件。
本論文提出自供電同步切換介面電路使用台積0.25 μm高壓製程。其整體消耗功率為26 μW,操作頻率為120 Hz,最佳附載阻抗為1.5 MΩ,在最佳附載阻抗下輸出功率為43.42 μW,相較於標準能量擷取電路提高了3.36倍。


In recent years, the concept of the machine to machine (M2M) and the internet of things (IoT) have drawn the industry’s much attention. In order to monitor different status of the environment, the requirement for sensors are increasing. Due to the advancement of semiconductor fabrication technologies, the power consumption of the sensor was reduced to about ten microwatts. In order to solve the power supply of the sensor, the energy harvesting technology can transform the vibrational energy into electrical energy from the environment. The energy harvesting technology can provide power in scales of tens to hundreds microwatts. Using synchronized switching technology, one can increase the output power of the energy harvesting technology.
This thesis presents a self-powered synchronized switching technique for piezoelectric energy harvesting. The architecture consists of a peak detector, a comparator, and a digital switch. The control signal for the digital switch is generated by the peak detector and the comparator. With the MEMS process, the output power of the piezoelectric element is less than 100 microwatts. Therefore, the complicated design of the interface circuit is inadequate to be driven by the piezoelectric element. Nevertheless, the design of the self-powered synchronized switching techniques is much simple and thus more appropriate the piezoelectric element fabricated by the MEMS process.
This proposed a self-powered synchronized switching interface circuit is fabricated by TSMC 0.25 μm 60V high voltage 1P3M cmos process. The power consumption is 26 μW at the element resonant frequency of 120 Hz. The optimal output power is 43.42 μW under the optimal load of 1.5 MΩ. The self-powered synchronized switching interface circuit can increase the power extraction to 3.36 times comparing to the standard circuit.


誌謝 i
中文摘要 ii
Abstract iii
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-2-1 介面電路設計 3
1-2-2 自供電能量擷取系統 5
1-3 論文架構 8
第二章 能量擷取介面電路簡介 10
2-1 壓電材料的特性 10
2-2 壓電機電偶和係數 12
2-3 壓電等效電路 13
2-4 標準能量擷取電路 16
2-5 同步切換介面電路分析 19
2-5-1 並聯電感式同步切換電路(Parallel-SSHI) 21
2-5-2 串聯電感式同步切換電路(Series-SSHI) 24
2-6 輸出功率討論 27
第三章 以環境振動能驅動無線藍芽溫度感測器 31
3-1 壓電元件 31
3-2 以環境振動能驅動無線藍芽溫度感測器電路設計 32
3-2-1 儲能電路 33
3-2-2 開關切換電路 34
3-2-3 理論分析 35
3-2-4 藍芽模組板 37
3-3 實驗結果與討論 38
3-3-1 實驗架設 38
3-3-2 實驗結果 39
3-3-3 小結與問題討論 40
第四章 自供電同步切換介面電路研究 42
4-1 自供電同步切換介面電路設計 43
4-1-1 自供電開關分析 43
4-1-2 自供電同步切換介面電路架構 46
4-2 實驗結果模擬 48
4-3 實驗結果與討論 51
4-3-2 實驗架設 51
4-3-2 實驗結果 53
4-3-3 實驗結果討論 55
第五章 自供電同步切換介面電路晶片設計 56
5-1 自供電同步切換介面晶片設計考量 56
5-1-1 MOSFET二極體峰值檢知器 57
5-1-2 開關電路 57
5-1-3 主動整流器 59
5-1-4 靜電放電(ESD)保護電路 60
5-1-5 自供電同步切換介面電路晶片架構 62
5-2 模擬結果與晶片佈局圖 63
5-2-1 模擬結果 63
5-2-2 晶片佈局與輸出規格 70
5-3 結果與討論 72
第六章 結論及未來展望 75
6-1 結論 75
6-2 未來展望 76
參考文獻 77


[1]Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, and Y. Nozaki, "Toward intelligent machine-to-machine communications in smart grid," IEEE Communications Magazine, vol. 49, pp. 60-65, 2011.
[2]S. Li, L. D. Xu, and S. Zhao, "The internet of things: a survey," Information Systems Frontiers, vol. 17, pp. 243-259, 2015.
[3]M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorganic chemistry, vol. 44, pp. 6841-6851, 2005.
[4]P. Shashank, C. Chih-Ta, F. Darren, and Z. Jeff, "Piezoelectric Windmill: A Novel Solution to Remote Sensing," Japanese Journal of Applied Physics, vol. 44, p. L104, 2005.
[5]S. Pogacian, A. Bot, and D. Zotoiu, "Acoustic noise and pneumatic wave vortices energy harvesting on highways," AIP Conference Proceedings, vol. 1425, pp. 77-80, 2012.
[6]H. A. Sodano, G. E. Simmers, R. Dereux, and D. J. Inman, "Recharging batteries using energy harvested from thermal gradients," Journal of Intelligent material systems and structures, vol. 18, pp. 3-10, 2007.
[7]R. Amirtharajah, "Design of a low power VLSI systems powered by ambient mechanical vibration," Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.
[8]P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, "Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices," Proceedings of the IEEE, vol. 96, pp. 1457-1486, 2008.
[9]T. Starner, "Human-powered wearable computing," IBM Systems Journal, vol. 35, pp. 618-629, 1996.
[10]G. W. Taylor, J. R. Burns, S. Kammann, W. B. Powers, and T. R. Welsh, "The energy harvesting eel: a small subsurface ocean/river power generator," IEEE journal of oceanic engineering, vol. 26, pp. 539-547, 2001.
[11]N. White, P. Glynne-Jones, and S. Beeby, "A novel thick-film piezoelectric micro-generator," Smart Materials and Structures, vol. 10, p. 850, 2001.
[12]M. Duffy and D. Carroll, "Electromagnetic generators for power harvesting," in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, pp. 2075-2081 Vol.3.
[13]J. A. Paradiso and M. Feldmeier, "A compact, wireless, self-powered pushbutton controller," in International Conference on Ubiquitous Computing, 2001, pp. 299-304.
[14]S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes," Computer communications, vol. 26, pp. 1131-1144, 2003.
[15]S. Roundy and P. K. Wright, "A piezoelectric vibration based generator for wireless electronics," Smart Materials and structures, vol. 13, p. 1131, 2004.
[16]J. J. Chen, Y. C. Lien, C. L. Kuo, and W. J. Wu, "Self-powered wireless temperature sensor with piezoelectric energy harvester fabricated with metal-MEMS process," in Nano/Micro Engineered and Molecular Systems (NEMS), 2015 IEEE 10th International Conference on, 2015, pp. 619-622.
[17]G. A. Lesieutre, G. K. Ottman, and H. F. Hofmann, "Damping as a result of piezoelectric energy harvesting," Journal of Sound and Vibration, vol. 269, pp. 991-1001, 2004.
[18]A. Rajasekaran, A. Hande, and D. Bhatia, "Buck-boost converter based power conditioning circuit for low excitation vibrational energy harvesting," in Third Annual Austin Conference on Integrated Circuits and Systems, Austin, TX, 2008.
[19]S. Guo and H. Lee, "An Efficiency-Enhanced Integrated CMOS Rectifier with Comparator-Controlled Switches for Transcutaneous Powered Implants," in 2007 IEEE Custom Integrated Circuits Conference, 2007, pp. 385-388.
[20]D. Guyomar and M. Lallart, "Energy conversion improvement in ferroelectrics: application to energy harvesting and self-powered systems," in 2009 IEEE International Ultrasonics Symposium, 2009, pp. 1-10.
[21]G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply," IEEE Transactions on Power Electronics, vol. 17, pp. 669-676, 2002.
[22]D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, "Toward energy harvesting using active materials and conversion improvement by nonlinear processing," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, pp. 584-595, 2005.
[23]E. Lefeuvre, A. Badel, A. Benayad, L. Lebrun, C. Richard, and D. Guyomar, "A comparison between several approaches of piezoelectric energy harvesting," in Journal de Physique IV (Proceedings), 2005, pp. 177-186.
[24]W. Wu, A. Wickenheiser, T. Reissman, and E. Garcia, "Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers," Smart Materials and Structures, vol. 18, p. 055012, 2009.
[25]D. Guyomar and M. Lallart, "Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation," Micromachines, vol. 2, pp. 274-294, 2011.
[26]A. Badel, D. Guyomar, E. Lefeuvre, and C. Richard, "Piezoelectric energy harvesting using a synchronized switch technique," Journal of Intelligent Material Systems and Structures, vol. 17, pp. 831-839, 2006.
[27]M. Lallart and D. Guyomar, "An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output," Smart Materials and Structures, vol. 17, p. 035030, 2008.
[28]J. Liang and W. H. Liao, "An improved self-powered switching interface for piezoelectric energy harvesting," in Information and Automation, 2009. ICIA ''09. International Conference on, 2009, pp. 945-950.
[29]Y. Y. Chen, D. Vasic, F. Costa, W. J. Wu, and C. K. Lee, "Self-powered piezoelectric energy harvesting device using velocity control synchronized switching technique," in IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 2010, pp. 1785-1790.
[30]Y. K. Ramadass and A. P. Chandrakasan, "An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor," IEEE Journal of Solid-State Circuits, vol. 45, pp. 189-204, 2010.
[31]X. D. Do, Y. H. Ko, H. H. Nguyen, H. B. Le, and S. G. Lee, "An efficient parallel SSHI rectifier for piezoelectric energy scavenging systems," in Advanced Communication Technology (ICACT), 2011 13th International Conference on, 2011, pp. 1394-1397.
[32]X. D. Do, H. H. Nguyen, S. K. Han, and S. G. Lee, "A rectifier for piezoelectric energy harvesting system with series Synchronized Switch Harvesting Inductor," in Solid-State Circuits Conference (A-SSCC), 2013 IEEE Asian, 2013, pp. 269-272.
[33]S. Lu and F. Boussaid, "A Highly Efficient P-SSHI Rectifier for Piezoelectric Energy Harvesting," IEEE Transactions on Power Electronics, vol. 30, pp. 5364-5369, 2015.
[34]H. Liu, C. Ge, and J. Liang, "A mechanical solution of self-powered SSHI interface for piezoelectric energy harvesting systems," 2015, pp. 94311G-94311G-8.
[35]吳朗, "電子陶瓷-壓電陶瓷", 全欣資訊圖書," 1994.
[36]D. A. Berlincourt, D. R. Curran, and H. Jaffe, "Piezoelectric and piezomagnetic materials and their function in transducers," Physical Acoustics: Principles and Methods, vol. 1, pp. 169-270, 1964.
[37]W. P. Mason, "Electromechanical transducers and wave filters," 1948.
[38]A. Badel, M. Lagache, D. Guyomar, E. Lefeuvre, and C. Richard, "Finite element and simple lumped modeling for flexural nonlinear semi-passive damping," Journal of Intelligent Material Systems and Structures, 2007.
[39]A. Erturk and D. J. Inman, "Issues in mathematical modeling of piezoelectric energy harvesters," Smart Materials and Structures, vol. 17, p. 065016, 2008.
[40]K. Van Dyke, "The electric network equivalent of a piezoelectric resonator," Phys. Rev, vol. 25, p. 895, 1925.
[41]"IEEE Standard Definitions and Methods of Measurement for Piezoelectric Vibrators," IEEE Std No.177, p. 1, 1966.
[42]E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, "A comparison between several vibration-powered piezoelectric generators for standalone systems," Sensors and Actuators A: Physical, vol. 126, pp. 405-416, 2006.
[43]D. Guyomar, D. Sebald, S. Pruvost, M. Lallart, A. Khodayari, and C. Richard, "Energy harvesting from ambient vibrations and heat," Journal of Intelligent Material Systems and Structures, 2008.
[44]P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-Edgecombe, "Discovering Activities to Recognize and Track in a Smart Environment," IEEE Transactions on Knowledge and Data Engineering, vol. 23, pp. 527-539, 2011.
[45]S. C. Lin and W. J. Wu, "Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method," Journal of Micromechanics and Microengineering, vol. 23, p. 125028, 2013.
[46]S. C. Lin and W. J. Wu, "Piezoelectric micro energy harvesters based on stainless-steel substrates," Smart Materials and Structures, vol. 22, p. 045016, 2013.
[47]A. Badel, D. Guyomar, E. Lefeuvre, and C. Richard, "Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion," Journal of Intelligent Material Systems and Structures, vol. 16, pp. 889-901, 2005.
[48]C. Richard, D. Guyomar, D. Audigier, and G. Ching, "Semi-passive damping using continuous switching of a piezoelectric device," 1999, pp. 104-111.
[49]C. Richard, D. Guyomar, D. Audigier, and H. Bassaler, "Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor," 2000, pp. 288-299.
[50]J. Liang and W. H. Liao, "Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems," IEEE Transactions on Industrial Electronics, vol. 59, pp. 1950-1960, 2012.
[51]Z. Xu, Z. Yang, and J. Zu, "Impedance matching circuit for synchronous switch harvesting on inductor interface," in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), 2015, pp. 341-345.
[52]S. Pang, W. Li, and J. Kan, "Optimization Analysis of Interface Circuits in Piezoelectric Energy Harvesting Systems," Journal of Power Technologies, vol. 96, pp. 1-7, 2016.
[53]M. Lallart, Y. C. Wu, and D. Guyomar, "Switching Delay Effects on Nonlinear Piezoelectric Energy Harvesting Techniques," IEEE Transactions on Industrial Electronics, vol. 59, pp. 464-472, 2012.
[54]G. Koetzle, "VLSI technology trends," in CompEuro ''89., ''VLSI and Computer Peripherals. VLSI and Microelectronic Applications in Intelligent Peripherals and their Interconnection Networks'', Proceedings., 1989, pp. 5/58-5/62.
[55]C. Lee and A. Johnston, "Comparison of total dose effects on micropower op-amps: bipolar and cmos," in IEEE Radiation Effects Data Workshop, 1998, pp. 132-136.
[56]D. Wang and X. Wang, "The performance comparison of CMOS vs biploar VCO in SiGe BiCMOS technology," in IEEE MTT-S International Microwave Symposium digest, 2003, pp. A101-A104.
[57]C. Peters, D. Spreemann, M. Ortmanns, and Y. Manoli, "A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications," Journal of micromechanics and microengineering, vol. 18, p. 104005, 2008.
[58]Y. K. Ramadass, "Energy processing circuits for low-power applications," Massachusetts Institute of Technology, 2009.
[59]N. Krihely and S. Ben-Yaakov, "Self-Contained Resonant Rectifier for Piezoelectric Sources Under Variable Mechanical Excitation," IEEE Transactions on Power Electronics, vol. 26, pp. 612-621, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊