[1]Song, Sha, et al. Asymmetric hetero-assembly of colloidal nanoparticles through “crash reaction in a centrifugal field. Dalton Transactions 43.16 (2014): 5994-5997.
[2]Chang, Hyejin, et al. Ag Shell–Au Satellite Hetero-Nanostructure for Ultra-Sensitive, Reproducible, and Homogeneous NIR SERS Activity. ACS applied materials & interfaces 6.15 (2014): 11859-11863.
[3]Yoon, Jun Hee, Jonghui Lim, and Sangwoon Yoon. Controlled Assembly and Plasmonic Properties of Asymmetric Core–Satellite Nanoassemblies. ACS nano 6.8 (2012): 7199-7208.
[4]Ge, Jianping, et al. Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie 120.46 (2008): 9056-9060.
[5]Dey, Priyanka, et al. Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers. Journal of Materials Chemistry B 2.19 (2014): 2827-2837.
[6]Liu, Zhen, et al. Highly Sensitive, Uniform, and Reproducible Surface‐Enhanced Raman Spectroscopy from Hollow Au‐Ag Alloy Nanourchins.Advanced Materials 26.15 (2014): 2431-2439.
[7]Rossner, Christian, and Philipp Vana. Planet–Satellite Nanostructures Made To Order by RAFT Star Polymers. Angewandte Chemie International Edition53.46 (2014): 12639-12642.
[8]He, Ru, et al. Plasmonic Core/Satellite Heterostructure with Hierarchical Nanogaps for Raman Spectroscopy Enhanced by Shell‐Isolated Nanoparticles. Advanced Optical Materials 2.8 (2014): 788-793.
[9]Gandra, Naveen, et al. Plasmonic planet–satellite analogues: hierarchical self-assembly of gold nanostructures. Nano letters 12.5 (2012): 2645-2651.
[10]Sebba, David S., et al. Reconfigurable Core− Satellite Nanoassemblies as Molecularly-Driven Plasmonic Switches. Nano letters 8.7 (2008): 1803-1808.
[11]Chen, Shiuan-Yeh, and Anne A. Lazarides. Quantitative amplification of Cy5 SERS in ‘Warm Spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure†. The Journal of Physical Chemistry C113.28 (2009): 12167-12175.
[12]Wang, Siying, et al. Collective fluorescence enhancement in nanoparticle clusters. Nature communications 2 (2011): 364.
[13]Urban, Alexander S., et al. Three-dimensional plasmonic nanoclusters. Nano letters 13.9 (2013): 4399-4403.
[14]Wang, Yan-Qin, et al. A novel core-satellite CdTe/Silica/Au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu 2+. Biosensors and Bioelectronics 51 (2014): 40-46.
[15]Wang, Xuesi, et al. Hierarchical AgNR@ Cys@ AuNPs Helical Core–Satellite Nanostructure: Shape-Dependent Assembly and Chiroptical Response. The Journal of Physical Chemistry C 118.11 (2014): 5782-5788.
[16]Jia, Lei, et al. Unconventional Assembly of Bimetallic Au–Ni Janus Nanoparticles on Chemically Modified Silica Spheres. Chemistry-A European Journal 20.7 (2014): 2065-2070.
[17]Wu, Yiping, et al. Individual SERS substrate with core–satellite structure decorated in shrinkable hydrogel template for pesticide detection. Journal of Raman Spectroscopy 45.1 (2014): 68-74.
[18]Yoon, Jun Hee, and Sangwoon Yoon. Probing Interfacial Interactions Using Core–Satellite Plasmon Rulers. Langmuir 29.48 (2013): 14772-14778.
[19]Weng, Ziqing, et al. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Analytica chimica acta 803 (2013): 128-134.
[20]Xiao, Qingfeng, et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. Journal of the American Chemical Society 135.35 (2013): 13041-13048.
[21]Song, Hyeon Don, et al. On-chip colorimetric detection of Cu2+ ions via density-controlled plasmonic core–satellites nanoassembly. Analytical chemistry 85.16 (2013): 7980-7986.
[22]Chen, Dongyun, et al. Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release.Advanced Functional Materials 23.35 (2013): 4324-4331.
[23]Kang, Jeon Woong, et al. High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap. Nano letters 15.3 (2015): 1766-1772.
[24]Lim, Dong-Kwon, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.Nature nanotechnology 6.7 (2011): 452-460.
[25]Louis, Catherine, and Olivier Pluchery. Gold nanoparticles for physics, chemistry and biology. London: Imperial College Press, 2012.
[26]Wormeester, Herbert, E. Stefan Kooij, and Bene Poelsema. Self-Assembled Thin Films: Optical Characterization. (2004): 3361-3371.
[27]Ferraro, John R. Introductory raman spectroscopy. Academic press, 2003.
[28]Skoog, Douglas A., and Donald M. West. Principles of instrumental analysis. Vol. 158. Philadelphia: Saunders College, 1980.
[29]Akbulut, Ozge, et al. Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano letters 12.8 (2012): 4060-4064.
[30]Mace, Charles R., et al. Aqueous multiphase systems of polymers and surfactants provide self-assembling step-gradients in density. Journal of the American Chemical Society 134.22 (2012): 9094-9097.
[31]Jain, Prashant K., et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B110.14 (2006): 7238-7248.
[32]Smith, Ewen, and Geoffrey Dent. Modern Raman spectroscopy: a practical approach. John Wiley & Sons, 2013.
[33]Khanal, Bishnu P., and Eugene R. Zubarev. Purification of high aspect ratio gold nanorods: complete removal of platelets. Journal of the American Chemical Society 130.38 (2008): 12634-12635.
[34]Gill, Rajinder S., Ravi F. Saraf, and Subrata Kundu. Self-Assembly of Gold Nanoparticles on Poly (allylamine Hydrochloride) Nanofiber: A New Route to Fabricate “Necklace as Single Electron Devices. ACS applied materials & interfaces 5.20 (2013): 9949-9956.
[35]Hanauer, Matthias, et al. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano letters 7.9 (2007): 2881-2885.
[36]Xiong, Bin, et al. Separation of nanorods by density gradient centrifugation.Journal of Chromatography A 1218.25 (2011): 3823-3829.
[37]Tognalli, N., et al. SERS in PAH-Os and gold nanoparticle self-assembled multilayers. The Journal of chemical physics 123.4 (2005): 044707.
[38]Hu, Can, and Yi Chen. Uniformization of silica particles by theory directed rate-zonal centrifugation to build high quality photonic crystals. Chemical Engineering Journal 271 (2015): 128-134.
[39]Liu, Fu-Ken. Using Size-Exclusion Chromatography to Monitor Variations in the Sizes of Microwave-Irradiated Gold Nanoparticles. ISRN Chromatography2012 (2012).
[40]Wang, Yunqing, Bing Yan, and Lingxin Chen. SERS tags: novel optical nanoprobes for bioanalysis. Chemical reviews 113.3 (2012): 1391-1428.
[41]Ichim, Christine V., and Richard A. Wells. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation.Journal of translational medicine 9.1 (2011): 1-8.
[42]Brinker, C. J. Hydrolysis and condensation of silicates: effects on structure.Journal of Non-Crystalline Solids 100.1 (1988): 31-50.
[43]Ung, Thearith, Luis M. Liz-Marzán, and Paul Mulvaney. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir 14.14 (1998): 3740-3748.
[44]Iler, Ralph K. The chemistry of silica: solubility, polymerization, colloid and surface pro perties, and biochemistry. Wiley, 1979.
[45]Somasundaran, Ponisseril. Encyclopedia of surface and colloid science. Vol. 1. CRC press, 2006.
[46]Liz-Marzán, Luis M., Michael Giersig, and Paul Mulvaney. Synthesis of nanosized gold-silica core-shell particles. Langmuir 12.18 (1996): 4329-4335.
[47]Zucolotto, Valtencir, et al. Unusual interactions binding iron tetrasulfonated phthalocyanine and poly (allylamine hydrochloride) in layer-by-layer films. The Journal of Physical Chemistry B 107.16 (2003): 3733-3737.
[48]De Carvalho, Dhieniffer Ferreira, et al. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 103 (2013): 108-113.
[49]Kobayashi, Yoshio, et al. Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties. Journal of colloid and interface science 358.2 (2011): 329-333.
[50]Kalimuthu, Palraj, and S. Abraham John. Studies on ligand exchange reaction of functionalized mercaptothiadiazole compounds onto citrate capped gold nanoparticles. Materials Chemistry and Physics 122.2 (2010): 380-385.
[51]Li, Jian Feng, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. nature 464.7287 (2010): 392-395.
[52]Ferrari, A. C., et al. Raman spectrum of graphene and graphene layers.Physical review letters 97.18 (2006): 187401.
[53]Schwan, J., et al. Raman spectroscopy on amorphous carbon films. Journal of Applied Physics 80.1 (1996): 440-447.
[54]2. Hong, Jinpyo, et al. Origin of new broad raman d and g peaks in annealed graphene. Scientific reports 3 (2013).
[55]Product Data Sheet of Gold NanoUrchins, cytodiagnostics
[56]Hunter, Robert J. Zeta potential in colloid science: principles and applications. Vol. 2. Academic press, 2013.
[57]Rule, K. L.; Vikesland, P. J. Environ. Sci. Technol. 2009, 43,1147.
[58]Tay, L. L.; Huang, P. J.; Tanha, J.; Ryan, S.; Wu, X.; Hulse, J.;Chau, L. K. Chem. Commun. 2012, 48, 1024.
[59]Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. J. Phys. Chem. C 2010, 114, 7421.
[60]Chuang, Chi‐Hung, and Yit‐Tsong Chen. Raman scattering of L‐tryptophan enhanced by surface plasmon of silver nanoparticles: vibrational assignment and structural determination. Journal of Raman Spectroscopy 40.2 (2009): 150-156.
[61]王翠蓮(2004),表面增強拉曼光譜技術應用於單分子偵測及生物分子定量分析,國立陽明大學醫學工程研究所碩士論文。[62]張哲瑋(2010),光催化法製備金奈米粒子的研究,私立東海大學化學研究所碩士論文。[63]江宇涵(2010),奈米粒子應用於癌細胞標定的拉曼光學量測,國立交通大學分子科學研究所碩士論文。[64]徐榮忠(2008),具奈米結構之電漿子生物感測器,國立成功大學工程科學研究所碩士論文。[65]許異凡(2010),奈米金屬球與球殼結構之表面電漿子特性分析研究,國立成功大學光電科學與工程研究所碩士論文。[66]陳雅文(2009),表面電漿子增強螢光效應之研究,國立成功大學工程科學研究所碩士論文。[67]李鵬霄(2010),表面電漿子應用於光譜濾波器之研究,國立成功大學光電科學與工程研究所博士論文。[68]曾重賓(2010),氧電漿輔助奈米球微影術之研究與應用,國立成功大學光電科學與工程研究所碩士論文。[69]邱品翔(2009),特殊形狀金屬奈米粒子製備技術及其光電應用,國立成功大學光電科學與工程研究所博士論文。[70]陳俊皓(2015),彈性與非彈性散射光譜系統的整合,國立中興大學物理學研究所碩士論文。