|
Albert, V.A., M. H. G. Gustafsson and L. Di Laurenzio. (1998). Ontogenetic systematics, molecular developmental genetics and the angiosperm flower. In Molecular Systematics of Plants Ⅱ, P. Soltis, D., Soltis and J. J. Doyle, ed (New York City, NY, USA: Kluwer Academic Publishers), pp. 349-374. Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., de Pouplana, L.R., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences of the United States of America 97, 5328-5333. Baumann, K., Perez-Rodriguez, M., Bradley, D., Venail, J., Bailey, P., Jin, H.L., Koes, R., Roberts, K., and Martin, C. (2007). Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134, 1691-1701. Bremer, B., Bremer, K., Chase, M.W., Reveal, J.L., Soltis, D.E., Soltis, P.S., Stevens, P.F., Anderberg, A.A., Fay, M.F., Goldblatt, P., Judd, W.S., Kallersjo, M., Karehed, J., Kron, K.A., Lundberg, J., Nickrent, D.L., Olmstead, R.G., Oxelman, B., Pires, J.C., Rodman, J.E., Rudall, P.J., Savolainen, V., Sytsma, K.J., van der Bank, M., Wurdack, K., Xiang, J.Q.Y., and Zmarzty, S. (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399-436. Castillejo, C., Romera-Branchat, M., and Pelaz, S. (2005). A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant Journal 43, 586-596. Chang, S., J. Puryear and J. Cairney. (1993). A simple and efficient method for isolating RNA from pine tree. Plant Molecular Biology Reporter 11, 113-116. Cho, S.C., Jang, S.H., Chae, S.J., Chung, K.M., Moon, Y.H., An, G.H., and Jang, S.K. (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Molecular Biology 40, 419-429. Claβen-bockhoff, R. (1990). Pattern-analysis in pseudanthia. Plant Systematics and Evolution 171, 57-88. Coen, E.S., and Meyerowitz, E.M. (1991). The war of whorls - genetic interactions controlling flower development. Nature 353, 31-37. Colombo, L., Franken, J., Koetje, E., Vanwent, J., Dons, H.J.M., Angenent, G.C., and Vantunen, A.J. (1995). The Petunia MADS Box Gene FBP11 Determines Ovule Identity. Plant Cell 7, 1859-1868. Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M.F. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14, 1935-1940. Editorial committee of the Flora of Taiwan. (1993). Flora of Taiwan, Volume 3 (Taipei: Editorial committee of the Flora of Taiwan), pp. 35-64. Egea-Cortines, M., Saedler, H., and Sommer, H. (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. Embo Journal 18, 5370-5379. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 1-15. Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., and Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531-1545. Glover, B.J., and Martin, C. (1998). The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80, 778-784. Glover, B.J., Perez-Rodriguez, M., and Martin, C. (1998). Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125, 3497-3508. Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525-529. Hsieh, W.-P. (2006). Functional analysis of MADS box genes and the investigation of their interactions in regulating floral organ formation from lily (Lilium longiflorum). In Institute of Biotechnology (Taichung City: National Chung Hsing University). Huelsenbeck, J.P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755. Hufford, L. (2004). Hydrangeaceae. In The Families and Genera of Vascular Plants, K. Kubitzki, ed (Berlin, Heidelberg, Germany: Springer-Verlag), pp. 202-215. Hufford, L., Moody, M.L., and Soltis, D.E. (2001). A phylogenetic analysis of Hydrangeaceae based on sequences of the plastid gene matK and their combination with rbcl and morphological data. International Journal of Plant Sciences 162, 835-846. Jackson, D., Culianez-Macia, F., Prescott, A. G., Roberts, K. and Martin, C. (1991). Expression patterns of Myb genes from Antirrhinum flowers. Plant Cell 3. Kalivas, A., Pasentsis, K., Polidoros, A.N., and Tsaftaris, A.S. (2007). Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. DNA Sequence 18, 120-130. Kanno, A., Saeki, H., Kameya, T., Saedler, H., and Theissen, G. (2003). Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology 52, 831-841. Kay, Q.O.N., Daoud, H.S., and Stirton, C.H. (1981). Pigment distribution, light-reflection and cell structure in petals. Botanical Journal of the Linnean Society 83, 57-83. Kramer, E.M., Dorit, R.L., and Irish, V.F. (1998). Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149, 765-783. Kramer, E.M., Di Stilio, V.S., and Schluter, P.M. (2003). Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. International Journal of Plant Sciences 164, 1-11. Kranz, H.D., Denekamp, M., Greco, R., Jin, H., Leyva, A., Meissner, R.C., Petroni, K., Urzainqui, A., Bevan, M., Martin, C., Smeekens, S., Tonelli, C., Paz-Ares, J., and Weisshaar, B. (1998). Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant Journal 16, 263-276. Lu, C.-Y. (2004). Expression patterns of floral organ identity genes in petaloid structure of Mussaenda spp. (Rubiaceae). In Institute of Ecology and Evolutionary Biology (Taipei City: National Taiwan University). Müller, B.M., Saedler, H., and Zachgo, S. (2001). The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant Journal 28, 169-179. Maddison, D.R.a.W.P.M. (2000). MacClade 4: Analysis of phylogeny and character evolution, version 4.0. (Sunderland, Massachusetts, USA: Sinauer Associates). Ng, M., and Yanofsky, M.F. (2000). Three ways to learn the ABCs. Current Opinion in Plant Biology 3, 47-52. Noda, K., Glover, B.J., Linstead, P., and Martin, C. (1994). Flower color intensity depends on specialized cell-shape controlled by a myb-related transcription factor. Nature 369, 661-664. Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R., and Yanofsky, M.F. (2001a). Conversion of leaves into petals in Arabidopsis. Current Biology 11, 182-184. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203. Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., and Yanofsky, M.F. (2001b). APETALA1 and SEPALLATA3 interact to promote flower development. Plant Journal 26, 385-394. Pnueli, L., Abuabeid, M., Zamir, D., Nacken, W., Schwarzsommer, Z., and Lifschitz, E. (1991). The MADS box gene family in tomato - temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant Journal 1, 255-266. Pollock, R., and Treisman, R. (1991). Human SRF-related proteins-DNA-binding properties and potential regulatory targets. Genes & Development 5, 2327-2341. Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biological Chemistry 378, 1079-1101. Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996a). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America 93, 4793-4798. Riechmann, J.L., Wang, M.Q., and Meyerowitz, E.M. (1996b). DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research 24, 3134-3141. Robles, P., and Pelaz, S. (2005). Flower and fruit development in Arabidopsis thaliana. International Journal of Developmental Biology 49, 633-643. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method foe reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425. Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H., and Sommer, H. (1992). Characterization of the Antirrhinum floral homeotic MADS-box gene DEFICIENS - evidence for DNA-binding and autoregulation of its persistent expression throughout flower development. Embo Journal 11, 251-263. Stevens, P.F. (2006). Angiosperm Phylogeny Website. Version 7. Stracke, R., Werber, M., and Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4, 447-456. Swofford, D.L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0beta10. (Sunderland, Massachusetts, USA: Sinauer Associates). Theissen, G. (2001). Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4, 75-85. Theissen, G., and Saedler, H. (2001). Plant biology - Floral quartets. Nature 409, 469-471. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Molecular Biology 42, 115-149. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882. Tzeng, T.Y., and Yang, C.H. (2001). A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant and Cell Physiology 42, 1156-1168. Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K., and Gerats, T. (2004). The duplicated B-class heterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16, 741-754. Weigel, and Meyerowitz. (1994). The ABCs of floral homeotic genes. Cell 79, 180-180. Zahn, L.M., Leebens-Mack, J., dePamphilis, C.W., Ma, H., and Theissen, G. (2005). To B or not to B a flower: The role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of Heredity 96, 225-240.
|