跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.89) 您好!臺灣時間:2025/11/30 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫維廷
研究生(外文):Wei Ting Sun
論文名稱:應用分佈式元件與水筒模式建立降雨-逕流模式之研究
論文名稱(外文):Appling the Distributed Surface-Runoff Components and a Tank Model to Establish a Rainfall-Runoff Model
指導教授:李天浩李天浩引用關係
指導教授(外文):Tim Hau Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:107
中文關鍵詞:降雨逕流水筒模式地表逕流石門水庫馬斯金更─康奇法
外文關鍵詞:Rainfall-RunoffTank ModelSurface-RunoffSh-men reservoirSCSMuskingum-Cunge method
相關次數:
  • 被引用被引用:8
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:2
本研究的目的在建立一能真實反映集水區河網結構與分佈式地形條件之短時距降雨─逕流模式,以模擬上游集水區之逕流歷程。
除了模擬直接逕流外,並採用水筒模式模擬基流量的時間序列。採用美國水土保持局(Soil Conservation Service,簡稱SCS)估計降雨損失方法(1972),將降雨分離為入滲與超滲降雨兩部分,分別輸入至水筒模式及直接逕流模式,以水筒模式模擬入滲轉換為基流量的過程避免基流分離方法機械化處理造成的不確定性。
演算直接逕流的方法,是利用數值地形模式(DTM)配合地理資訊系統(GIS)之套裝軟體(ARC/INFO)架構河川網路,並依河網結構將集水區劃分為多個子集水區元件,由各元件的集流時間決定適當的降雨延時,再採用SCS無因次單位歷線法計算子集水區的單位歷線,再經過S歷線的轉換,求得各分佈式子集水區元件之五分鐘降雨延時的單位歷線。應用Cunge(1969)所創的Muskingum-Cunge水文洪水演算法,按照各元件的空間關係位置和河川網路架構,進行河川演算。模擬入滲量轉換為基流量的過程,本研究採用水筒概念模式,以二個直列式之水筒,分別模擬中間流與地下水流。
本研究將建立的降雨─逕流模式,應用於石門水庫上游集水區秀巒站之颱洪事件模擬。在賀伯與瑞伯兩颱洪事件的水位─流量紀錄,由於洪水沖刷或淤積,改變觀測水位與流量之間的率定關係,研究中以逕流係數校劾觀測流量。模擬楊希、寶莉、歐馬、泰德、賀伯、溫妮與瑞伯等颱風降雨逕流的結果,顯示模式對於高強度之暴雨,可以得到和觀測值接近的模擬結果;和採用單位歷線法模擬直接逕流,加上同樣的水筒模組模擬基流量所得的結果接近。但是對於低強度之長時間降雨,由於觀測得到的逕流係數低,未來必須增加模擬截流、窪蓄,甚至蒸發散損失之模組。
The objective of this study was to establish a short-term rainfall-runoff model that was composed of distributed-components of the sub-watershed and the tank model. This model could reflect the characteristics of the basin geomorphology and the real structure of the stream network. Hence, this model could provide another better method to simulate the rainfall-runoff of upland watersheds.
Here the method to estimate the amount of infiltration adopted the method developed by Soil Conservation Service (SCS) for computing the abstraction from rainfall. That was to separate the rainfall into infiltration and excess rainfall. Then input the infiltration and excess rainfall into the tank model and the direct runoff model respectively. Furthermore, the tank model was used to simulate the process of the infiltration transferred into the baseflow and could avoid the uncertainty of the mechanized procedure of the base-flow separation.
As for the direct runoff model, a watershed can be treated as a number of subwatersheds based on the stream network. The digital terrain model (DTM) and the ARC/INFO software of Geographic Information System (GIS) were used to product the stream frame and demarcate subwatersheds. Furthermore, SCS dimensionless hydrograph and S-hydrograph methods were used to evaluate the five minutes duration of each distributed-component’s unit hydrograph. According to the space position of each subwatersheds and stream frame, the Muskingum-Cunge method developed by Cunge(1969) was applied to hydrologic river routing and simulate direct runoff hydrologic for the watershed. As for the process of the infiltration transferred into the baseflow, the two connected conceptual tanks were employed in this model to simulated the interflow and baseflow.
In this study, the model was applied to simulate the runoff of the typhoon events in the Xiu-Loan upstream watershed of the Sh-men reservoir in Taiwan. During the Herb and Zeb typhoons, the river scoured or deposited so that the rating curve would be change. Therefore, the runoff coefficient was used to recheck the rating curve. The simulated results of Yancy, Polly, Omar, Ted, Herb, Winnie and Zeb were very satisfied with observated runoff when the rainfall intensity was high. Besides, another method adopted in this study was unit hydrograph and tank model and its simulated results also showed closely with previous model’s. But when rainfall intensity was small, the observed runoff coefficient was low. Hence, the model should be improved to simulate interception, depression storage and evaportranspiration in the further.
第一章 前 言...................................................1
1-1研究動機與目的.............................................1
1-2研究區域簡介...............................................1
1-2研究方法概述...............................................3
1-3文獻回顧...................................................4
第二章 降雨-逕流模式之建構....................................8
2-1模式架構概述...............................................8
2-2河川網路架構與地文因子之推求...............................9
2-2-1數值地形模式之建立.....................................10
2-2-2河川網路自動化萃取.....................................11
2-3 SCS估計降雨損失方法......................................13
2-4地表逕流之模擬............................................14
2-4-1 SCS無因次單位歷線.....................................15
2-4-2 Muskingum-Cunge method................................17
2-5中間流及地下水流之模擬....................................23
2-5-1水筒模式之原理.........................................23
2-5-2水筒模式之理論分析.....................................24
第三章 模式之檢定.............................................29
3-1資料蒐集與校核............................................30
3-2模式參數及檢定方法........................................32
3-3參數檢定結果與討論........................................34
第四章 模式驗證與參數之敏感度分析.............................36
4-1模式驗證結果與討論........................................36
4-1-1模式驗證之適合性檢定標準...............................36
4-1-2驗證結果分析與討論.....................................38
4-2參數敏感度分析............................................41
第五章 結論與建議.............................................44
5-1研究結論..................................................44
5-2建議事項..................................................45
參考文獻......................................................46
符號索引表....................................................96
附錄..........................................................99
1.台灣省石門水庫管理局,「石門水庫集水區第二階段治理規劃」,1990。
2.Soil Conservation Service “SCS National Engineering Handbook,” U.S. Department of Agriculture, Washington, D. C., 1972.
3.Cunge, J. A., “On the Subject of a Flood Propagation Computation Method (Muskingum Method),” Journal of Hydraulic Research, Vol. 7, No. 2, pp.205-230, 1969.
4.Sherman, L. K. “Streamflow from Rainfall by the Unit-graph Method,” Eng. New-Rec., vol. 108, pp.501-505, 1932.
5.Snyder, F. F. “Synthetic Unit-graphs,” Trans. Am. Geophysical Union, 19, pp.447-454, 1938.
6.Nash, J. E., “The Form of the Instantaneous Unit Hydrograph,” Intl. Assoc. Sci. Hydrology, Pub. 45 vol. 3, pp.114-121, 1957.
7.Chow, V. T., and Kulandaiswamy, V. C., “General Hydrologic System Model,” J. of Hydraulics, ASCE, June, 1971.
8.Clark, C. O., “Storage and the Unit Hydrograph,” Tran. ASCE, 110(2261), pp.1419-1446, 1945.
9.Rodriguez-Iturbe, I., and J. B. Valdes, “The Geomorphic Structure of Hydrologic Response,” Water Resour. Res., 15(6), pp.1409-1420, 1979.
10.Gupta, V. K., E. Waymire, and C. T. Wang, “A Representation of an Instantaneous Unit Hydrograph form Geomorphology,” Water Resour. Res., 16(5), pp.855-862, 1980.
11.van der. Tak, L. D. and Bras, R. L. C. Chen, “Incorporating Hillslope Effects into the Geomorphologic Instantaneous Unit Hydrology,” Water Resour. Res., 26(10), 2393-2400. 1990.
12.Lee, K. T. and Yen. B. C., “Geomorphology and Kinematic-wave Based Hydrograoh Deviation,” J. Hydr. Engrg., ASCE, 123(1), 73-80. 1997.
13.謝龍生,「類神經網格颱風降雨預報模式與半分佈並聯型線性水庫概念逕流預報模式之研究及其整合應用」,國立臺灣大學農業工程學研究所博士論文,1999。
14.菅原正已,「水文水櫃模式分析技術研習會講義」,國立臺灣大學土木工程學研究所,1985。
15.李光敦、施匯點、吳英民、楊銘賢,「利用數值高程資料進行集水區逕流模擬(二)」,農業水資源經營技術88年度研究計畫成果發表討論會論文集,pp.215-240,1995。
16.蔡宜華,「三角形不規則網格之分佈型降雨─逕流模式」,國立臺灣大學農業工程學研究所碩士論文,1999。
17.陳展榮,「河川網路寬度函數應用於地貌型瞬時單位歷線之研究」,國立臺灣大學農業工程學研究所碩士論文,2000。
18.Peucker, T. K., and D. H. Douglas “Detection of Surface Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data”, Computer Graphics Image Processing, Vol. 4, pp. 375-387,1975.
19.Carrol, R., “Automated Gully Delineation Using Didital Elevation Data,” ACSMASP 49th Annu. Meet., Washington, D. C., Tech. Pap., pp.144-151, 1983.
20.Jenson, S. K. and J. O. Domingue, “Extracting Topographic Structure from Digital Elevation Data Geogrphic Information System Analysis, ” Photogrammetric Engineering and Remote Sensing, Vol. 54, No. 11, pp.1593-1600, November 1988.
21.Collins, S. H., “Terrain Parameters Directly from DTM, ”Can. Surv., Vol. 29, No. 5, pp.507-518, 1975.
22.Marks, D., Dozier, J. and J. Frew, “Automated Basin Delineation form Didital Elevation Data,” Geo-Processing, No. 2, pp.299-311, 1984.
23.王如意、易任,「應用水文學」,上、下冊,國立編輯館出版社,茂昌圖書公司發行,1990。
24.Chow, V. T., D. R. Maidment, and L. W. Mays, “Applied Hydrology”, McGraw-Hill, 1988.
25.Koussis, A. D., “Theoretical Estimation of Flood Routing Parameters,” Journal of Hydraulics Division, ASCE, Vol. 104, No. HY1, Proc. Paper 13456, Jan., pp.109-115, 1978.
26.A. J. Raudkivi, “Hydrology”, Pergamon, 1979.
27.王如意、劉佳明、易任、虞國興,「水筒模式及農業用水之研究」,國立臺灣大學農業工程學研究所研究報告,1980。
28.角屋睦、永井明博,「長短期流出二用乇 開發改良之應用」,日本農業土木學會論文集第136號,1988。
29.Crawford, N. H., and Linsley, R. K. “Diditial Simulation in Hydrology,” Stanford Watershed Model IV, Tech. Rept. 39,Dept. of Civil Engineering, Stanford University, Stanford, CA., 1966.
30.游保杉、鄭玉荻、蔡長泰,「應用全域最佳化技巧於分佈型降雨─逕流模式」,台灣水利,第43卷第2期,pp.45-53,1995。
31.薛鉠泉,「石門水庫運用二十五年來水文氣象綜合研究」,1991。
32.“ARC/INFO User’s Guide,” Environmental System Research In-
stitution Inc., 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top