跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐敦傑
研究生(外文):Tun-Chieh Hsu
論文名稱:以奈米壓痕法探討針葉樹木材細胞壁奈米機械性質
論文名稱(外文):Study on Nano Mechanical Properties of Softwood cell Walls by Nanoindentation
指導教授:林法勤林法勤引用關係
口試委員:丁鯤張啟生陳香君黃玲瓏
口試日期:2011-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:58
中文關鍵詞:原子力顯微鏡奈米壓痕技術微纖維傾斜角微觀力學性質
外文關鍵詞:AFMnanoindentationMFAmechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,材料科學研究的方向已從大尺度往微觀科技發展,原子力顯微鏡(Atomic force microscopy, AFM)以原子間凡得瓦力(Van der Waals force)為探測媒介,可運用於奈米壓痕技術(nanoindentation),對材料的力學性質與結構做深入分析,進而了解材料的表面性質,並結合奈米壓痕之力學特性,對材料做出最佳的研究與應用,在學術與工業應用上皆具發展潛力。
本研究透過奈米壓痕測試與AFM原子力顯微鏡進行觀測,對臺灣針葉樹種的細胞壁S2層進行奈米性質研究,配合木材之生理特質如木質素與微纖維傾斜角(microfibril angle,MFA)進行比較;結果顯示,木材微觀春秋材力學性質特性存在著很高的變異性,受木材組成分與生理結構微妙變化的影響,亦可能因為壓痕試驗參數設定的影響造成塑性變形;而木材的彈性係數性質與理論模型與考量探針幾何效應所推算的趨勢相近,可以推論出,在微觀尺度下,木材的彈性係數性質和巨觀性質相同,隨MFA增加而降低,但由於尺度細微,所以趨勢緩和許多;此外,木材微觀硬度大致隨MFA增加而降低,但仍有偏離趨勢的樣本點,考量木材為非均質的生物性材料,可以推論木材之微觀硬度是同時受到基質與纖維,再加上非均質性材料特性共同影響的力學性質。
由實驗的結果可以了解,木材在微觀尺度下的性質量測需考量的變因較巨觀量測複雜許多,也不如巨觀性質有較為一致的結果,故木材的微觀性質日後仍有很大的研究潛力。

With the progress of technology, the trend of material science has shifted from macro-scale to micro-scale study. Atomic force microscopy (AFM), which probes via the Van der Waals force between atoms, can be applied in nanoindentation technology and have detailed analysis of the mechanical properties and the structure of materials. With the understanding of the surface properties and nanoindentation mechanics, we can make the best use of materials in academic research and industrial applications. It has large potential in both two fields.
The S2 cell wall layer of common softwood species in Taiwan are studied through nanoindentation in our study. The micro-mechanics and biological properties such as lignin content and microfibril angles (MFA) are studied. The results indicate that there are high variability of the mechanical properties between early and latewood in micro-scale. It is affected by the differences of wood components and structures. Some plastic deformations may also exist due to the effect of indentation loading parameters.
The trend of elastic modulus is close to the model calculation and the consideration of the geometry of indentation probes. It decreases with the increase of MFA, but shows a more gentle curve than macro study due to micro-scale observations. Furthermore, the hardness in micro scale is generally decrease with the increasing MFA, but some deviating samples exist. Considering the material properties of wood, we can infer that the micro hardness is affected by matrix, structure, and the inhomogenerous nature of wood.
From the results of our study, the mechanical properties of wood in micro scale are much more complex than macro ones. And there is also high variability exist. The study on the mechanical properties of wood in micro scale still has large potential in the future. Our study provides a preliminary research on the material preparation and mechanical properties for the nanoindentation of Taiwanese tree species, which serves as references of further researches in the future.

口試委員會審定書 i
誌 謝 ii
摘 要 iv
Abstract v
目 錄 vi
圖 目 錄 viii
表 目 錄 xi
壹、 前言 1
貳、 前人研究 6
參、 材料與方法 18
3.1. 試驗樹種 18
3.2. 試驗儀器 18
3.3. 試材準備 23
3.3.1. 奈米壓痕試材製備 23
3.3.2. 小角度X光散射試材製備 25
3.3.3. 碘沉澱法(Schultze’s maceration method)觀測微纖維傾斜角 25
3.4. 實驗方法與步驟 26
3.4.1. AFM表面性質檢測 26
3.4.2. 奈米壓痕性質量測 26
3.4.3. 小角度X光散射量測微纖維傾斜角 27
3.4.4. 碘染色法 27
3.4.5. 木質素含量測定 28
肆、 實驗結果與討論 30
4.1. 原子力顯微鏡掃瞄結果 30
4.2. 微纖維傾斜角(MFA)量測結果 33
4.3. 木材巨觀生理性質與微觀力學性質的關係 37
4.3.1. 木材春秋材之微觀力學性質差異 37
4.3.2. 微觀彈性係數與生理特質 41
4.3.3. 微觀硬度與生理特質 48
伍、 結論 52
陸、 參考文獻 54


王松永(1993)木材物理學。國立編譯館 347頁。
王松永(2000)商用木材。中華林產事業協會 9,45頁。
Albrecht, T. R., & Quate, C. F. (1987). Atomic Resolution Imaging of a Nonconductor by Atomic Force Microscopy. Journal of Applied Physics, 62(7), 2599-2602.
Anagnost, S. E., Mark, R. E., & Hanna, R. B. (2000). Utilization of soft-rot cavity orientation for the determination of microfibril angle. Part I. Wood and Fiber Science, 32(1), 81-87.
Archard, J. F. (1953). Elastic Deformation and the Contact of Surfaces. Nature, 172(4385), 918-919.
Barnett, J. R., & Bonham, V. A. (2004). Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews, 79(2), 461-472.
Bergander, A., & Salmen, L. (2002). Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science, 37(1), 151-156.
Bowden, F. P. (1950). Friction. Nature, 166(4217), 330-334.
Butteerfield, B. G. (1998). Microfibril Angle in Wood. Paper presented at the IAWA/IUFRO International workshop on the Significance of Micro-fibril Angle to Wood Quality, Westport, N.Z.
Cave, I. D. (1969). Longitudinal Youngs Modulus of Pinus Radiata. Wood Science and Technology, 3(1), 40-&.
Cave, I. D. (1997a). Theory of X-ray measurement of microfibril angle in wood .1. The condition for reflection X-ray diffraction by materials with fibre type symmetry. Wood Science and Technology, 31(3), 143-152.
Cave, I. D. (1997b). Theory of X-ray measurement of microfibril angle in wood .2. The diffraction diagram - X-ray diffraction by materials with fibre type symmetry. Wood Science and Technology, 31(4), 225-234.
Cave, I. D., & Walker, J. C. F. (1994). Stiffness of Wood in Fast-Grown Plantation Softwoods - the Influence of Microfibril Angle. Forest Products Journal, 44(5), 43-48.
Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of Contact Deformations on Adhesion of Particles. Journal of Colloid and Interface Science, 53(2), 314-326.
Fengel, D. (1967). Contributions to Supermolecular Structure of Cellulose and Polyoses from Wood. Papier, 21(10A), 635-&.
Gindl, W., & Gupta, H. S. (2002). Cell-wall hardness and Young''s modulus of melamine-modified spruce wood by nano-indentation. Composites Part a-Applied Science and Manufacturing, 33(8), 1141-1145.
Gindl, W., Gupta, H. S., Schoberl, T., Lichtenegger, H. C., & Fratzl, P. (2004). Mechanical properties of spruce wood cell walls by nanoindentation. Applied Physics a-Materials Science & Processing, 79(8), 2069-2073.
Gindl, W., Reifferscheid, M., Adusumalli, R. B., Weber, H., Roder, T., Sixta, H., et al. (2008). Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer, 49(3), 792-799.
Gindl, W., & Schoberl, T. (2004). The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Composites Part a-Applied Science and Manufacturing, 35(11), 1345-1349.
Hainsworth, S. V., Chandler, H. W., & Page, T. F. (1996). Analysis of nanoindentation load-displacement loading curves. Journal of Materials Research, 11(8), 1987-1995.
Harrington, J. J., Booker, R., & Astley, R. J. (1998). Modelling the elastic properties of softwood - Part I: The cell-wall lamellae. Holz Als Roh-Und Werkstoff, 56(1), 37-41.
Herman, M., Dutilleul, P., & Avella-Shaw, T. (1999). Growth rate effects on intra-ring and inter-ring trajectories of microfibril angle in Norway spruce (Picea abies). Iawa Journal, 20(1), 3-21.
Jakes, J. E., Frihart, C. R., Beecher, J. F., Moon, R. J., & Stone, D. S. (2008). Experimental method to account for structural compliance in nanoindentation measurements. Journal of Materials Research, 23(4), 1113-1127.
Jakob, H. F., Fengel, D., Tschegg, S. E., & Fratzl, P. (1995). The elementary cellulose fibril in Picea abies: Comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules, 28(26), 8782-8787.
Jakob, H. F., Fratzl, P., & Tschegg, S. E. (1994). Size and Arrangement of Elementary Cellulose Fibrils in Wood Cells - a Small-Angle X-Ray-Scattering Study of Picea-Abies. Journal of Structural Biology, 113(1), 13-22.
Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface Energy and Contact of Elastic Solids. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 324(1558), 301-&.
Jonas, B. (2001). Micro- and Ultrastructural Aspects Of Norway Spruce Tracheids: A Review. Iawa Journal, 22(4), 333-353.
Junior, G. B., & Moreschi, J. C. (2003). Physical-mechanical properties and chemical composition of Pinus taeda mature wood following a forest fire. Bioresource Technology, 87(3), 231-238.
Konnerth, J., Gierlinger, N., Keckes, J., & Gindl, W. (2009). Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle. Journal of Materials Science, 44(16), 4399-4406.
Konnerth, J., & Gindl, W. (2006). Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung, 60(4), 429-433.
Konnerth, J., Harper, D., Lee, S. H., Rials, T. G., & Gindl, W. (2008). Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (SThM). Holzforschung, 62(1), 91-98.
Kuo-Huang, L. L., Chen, S. S., Huang, Y. S., Chen, S. J., & Hsieh, Y. I. (2007). Growth strains and related wood structures in the leaning trunks and branches of Trochodendron aralioides - A vessel-less dicotyledon. Iawa Journal, 28(2), 211-222.
Larsson, P. L., Giannakopoulos, A. E., Soderlund, E., Rowcliffe, D. J., & Vestergaard, R. (1996). Analysis of Berkovich indentation. International Journal of Solids and Structures, 33(2), 221-&.
Lichtenegger, H., Reiterer, A., Tschegg, S., & Fratzl, P. (1998). Determination of spiral angles of elementary fibrils in the wood cell wall: comparision of small-angle X-ray scattering and wide-angle diffraction. Paper presented at the IAWA/IUFRO International Workshop on the significance of Microfibril Angle to Wood Quality, Westport, N.Z.
Luxford, R. F. (1931). Effect of extractives on the strength of wood. Journal of Agricultural Research, 42, 0801-0826.
Mark, R. E. (1967). Cell wall mechanics of tracheids. New Haven: Yale University Press.
Maugis, D. (1992). Adhesion of Spheres - the Jkr-Dmt Transition Using a Dugdale Model. Journal of Colloid and Interface Science, 150(1), 243-269.
Mcmillin, C. W. (1973). Fibril Angle of Loblolly-Pine Wood as Related to Specific Gravity, Growth-Rate, and Distance from Pith. Wood Science and Technology, 7(4), 251-255.
Megraw, R. A. (1985). Wood quality factors in loblolly pine. Tappi, 88.
Oliver, W. C., & Pharr, G. M. (1992). An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research, 7(6), 1564-1583.
Page, D. H., Elhosseiny, F., Winkler, K., & Lancaster, A. P. S. (1977). Elastic-Modulus of Single Wood Pulp Fibers. Tappi, 60(4), 114-117.
Page, T. F., Oliver, W. C., & Mchargue, C. J. (1992). The Deformation-Behavior of Ceramic Crystals Subjected to Very Low Load (Nano)Indentations. Journal of Materials Research, 7(2), 450-473.
Pleasants, S., Batchelor, W. J., & Parker, I. H. (1998). Measuring the fibril angle of bleached fibres using micro-Raman spectroscopy. Appita Journal, 51(5), 373-376.
Preston, R. D. (1934). The organization of the cell wall of the conifer tracheid. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 224, 131-U145.
Preston, R. D. (1952). The molecular Architecture of plant cell walls. London: Chapman and Hall.
Reiterer, A., Jakob, H. F., Stanzl-Tschegg, S. E., & Fratzl, P. (1998). Spiral angle of elementary cellulose fibrils in cell walls of Picea abies determined by small-angle X-ray scattering. Wood Science and Technology, 32(5), 335-345.
Reiterer, A., Lichtenegger, H., Tschegg, S., & Fratzl, P. (1999). Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 79(9), 2173-2184.
Sahlberg, U., Salmen, L., & Oscarsson, A. (1997). The fibrillar orientation in the S2-layer of wood fibres as determined by x-ray diffraction analysis. Wood Science and Technology, 31(2), 77-86.
Schimleck, L. R., Evans, R., & Ilic, J. (2001). Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 31(10), 1671-1675.
Senft, J. F., & Bendtsen, B. A. (1985). Measuring Microfibrillar Angles Using Light-Microscopy. Wood and Fiber Science, 17(4), 564-567.
Spurr, A. R. (1969). A Low-Viscosity Epoxy Resin Embedding Medium for Electron Microscopy. Journal of Ultrastructure Research, 26(1-2), 31-&.
Swadener, J. G., Rho, J. Y., & Pharr, G. M. (2001). Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. Journal of Biomedical Materials Research, 57(1), 108-112.
Tabor, D. (1977). Surface Forces and Surface Interactions. Journal of Colloid and Interface Science, 58(1), 2-13.
Tze, W. T. Y., Wang, S., Rials, T. G., Pharr, G. M., & Kelley, S. S. (2007). Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements. Composites Part a-Applied Science and Manufacturing, 38(3), 945-953.
Vlassak, J. J., & Nix, W. D. (1993). Indentation Modulus of Elastically Anisotropic Half-Spaces. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 67(5), 1045-1056.
Wardrop, A. B. (1952). The Low-Angle Scattering of X-Rays by Conifer Tracheids. Textile Research Journal, 22(4), 288-291.
Wimmer, R., Lucas, B. N., Tsui, T. Y., & Oliver, W. C. (1997). Longitudinal hardness and Young''s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Science and Technology, 31(2), 131-141.
Wu, Y., Wang, S. Q., Zhou, D. G., Xing, C., & Zhang, Y. (2009). Use of Nanoindentation and Silviscan to Determine the Mechanical Properties of 10 Hardwood Species. Wood and Fiber Science, 41(1), 64-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top