王松永(1993)木材物理學。國立編譯館 347頁。王松永(2000)商用木材。中華林產事業協會 9,45頁。
Albrecht, T. R., & Quate, C. F. (1987). Atomic Resolution Imaging of a Nonconductor by Atomic Force Microscopy. Journal of Applied Physics, 62(7), 2599-2602.
Anagnost, S. E., Mark, R. E., & Hanna, R. B. (2000). Utilization of soft-rot cavity orientation for the determination of microfibril angle. Part I. Wood and Fiber Science, 32(1), 81-87.
Archard, J. F. (1953). Elastic Deformation and the Contact of Surfaces. Nature, 172(4385), 918-919.
Barnett, J. R., & Bonham, V. A. (2004). Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews, 79(2), 461-472.
Bergander, A., & Salmen, L. (2002). Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science, 37(1), 151-156.
Bowden, F. P. (1950). Friction. Nature, 166(4217), 330-334.
Butteerfield, B. G. (1998). Microfibril Angle in Wood. Paper presented at the IAWA/IUFRO International workshop on the Significance of Micro-fibril Angle to Wood Quality, Westport, N.Z.
Cave, I. D. (1969). Longitudinal Youngs Modulus of Pinus Radiata. Wood Science and Technology, 3(1), 40-&.
Cave, I. D. (1997a). Theory of X-ray measurement of microfibril angle in wood .1. The condition for reflection X-ray diffraction by materials with fibre type symmetry. Wood Science and Technology, 31(3), 143-152.
Cave, I. D. (1997b). Theory of X-ray measurement of microfibril angle in wood .2. The diffraction diagram - X-ray diffraction by materials with fibre type symmetry. Wood Science and Technology, 31(4), 225-234.
Cave, I. D., & Walker, J. C. F. (1994). Stiffness of Wood in Fast-Grown Plantation Softwoods - the Influence of Microfibril Angle. Forest Products Journal, 44(5), 43-48.
Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of Contact Deformations on Adhesion of Particles. Journal of Colloid and Interface Science, 53(2), 314-326.
Fengel, D. (1967). Contributions to Supermolecular Structure of Cellulose and Polyoses from Wood. Papier, 21(10A), 635-&.
Gindl, W., & Gupta, H. S. (2002). Cell-wall hardness and Young''s modulus of melamine-modified spruce wood by nano-indentation. Composites Part a-Applied Science and Manufacturing, 33(8), 1141-1145.
Gindl, W., Gupta, H. S., Schoberl, T., Lichtenegger, H. C., & Fratzl, P. (2004). Mechanical properties of spruce wood cell walls by nanoindentation. Applied Physics a-Materials Science & Processing, 79(8), 2069-2073.
Gindl, W., Reifferscheid, M., Adusumalli, R. B., Weber, H., Roder, T., Sixta, H., et al. (2008). Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer, 49(3), 792-799.
Gindl, W., & Schoberl, T. (2004). The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Composites Part a-Applied Science and Manufacturing, 35(11), 1345-1349.
Hainsworth, S. V., Chandler, H. W., & Page, T. F. (1996). Analysis of nanoindentation load-displacement loading curves. Journal of Materials Research, 11(8), 1987-1995.
Harrington, J. J., Booker, R., & Astley, R. J. (1998). Modelling the elastic properties of softwood - Part I: The cell-wall lamellae. Holz Als Roh-Und Werkstoff, 56(1), 37-41.
Herman, M., Dutilleul, P., & Avella-Shaw, T. (1999). Growth rate effects on intra-ring and inter-ring trajectories of microfibril angle in Norway spruce (Picea abies). Iawa Journal, 20(1), 3-21.
Jakes, J. E., Frihart, C. R., Beecher, J. F., Moon, R. J., & Stone, D. S. (2008). Experimental method to account for structural compliance in nanoindentation measurements. Journal of Materials Research, 23(4), 1113-1127.
Jakob, H. F., Fengel, D., Tschegg, S. E., & Fratzl, P. (1995). The elementary cellulose fibril in Picea abies: Comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules, 28(26), 8782-8787.
Jakob, H. F., Fratzl, P., & Tschegg, S. E. (1994). Size and Arrangement of Elementary Cellulose Fibrils in Wood Cells - a Small-Angle X-Ray-Scattering Study of Picea-Abies. Journal of Structural Biology, 113(1), 13-22.
Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface Energy and Contact of Elastic Solids. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 324(1558), 301-&.
Jonas, B. (2001). Micro- and Ultrastructural Aspects Of Norway Spruce Tracheids: A Review. Iawa Journal, 22(4), 333-353.
Junior, G. B., & Moreschi, J. C. (2003). Physical-mechanical properties and chemical composition of Pinus taeda mature wood following a forest fire. Bioresource Technology, 87(3), 231-238.
Konnerth, J., Gierlinger, N., Keckes, J., & Gindl, W. (2009). Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle. Journal of Materials Science, 44(16), 4399-4406.
Konnerth, J., & Gindl, W. (2006). Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung, 60(4), 429-433.
Konnerth, J., Harper, D., Lee, S. H., Rials, T. G., & Gindl, W. (2008). Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (SThM). Holzforschung, 62(1), 91-98.
Kuo-Huang, L. L., Chen, S. S., Huang, Y. S., Chen, S. J., & Hsieh, Y. I. (2007). Growth strains and related wood structures in the leaning trunks and branches of Trochodendron aralioides - A vessel-less dicotyledon. Iawa Journal, 28(2), 211-222.
Larsson, P. L., Giannakopoulos, A. E., Soderlund, E., Rowcliffe, D. J., & Vestergaard, R. (1996). Analysis of Berkovich indentation. International Journal of Solids and Structures, 33(2), 221-&.
Lichtenegger, H., Reiterer, A., Tschegg, S., & Fratzl, P. (1998). Determination of spiral angles of elementary fibrils in the wood cell wall: comparision of small-angle X-ray scattering and wide-angle diffraction. Paper presented at the IAWA/IUFRO International Workshop on the significance of Microfibril Angle to Wood Quality, Westport, N.Z.
Luxford, R. F. (1931). Effect of extractives on the strength of wood. Journal of Agricultural Research, 42, 0801-0826.
Mark, R. E. (1967). Cell wall mechanics of tracheids. New Haven: Yale University Press.
Maugis, D. (1992). Adhesion of Spheres - the Jkr-Dmt Transition Using a Dugdale Model. Journal of Colloid and Interface Science, 150(1), 243-269.
Mcmillin, C. W. (1973). Fibril Angle of Loblolly-Pine Wood as Related to Specific Gravity, Growth-Rate, and Distance from Pith. Wood Science and Technology, 7(4), 251-255.
Megraw, R. A. (1985). Wood quality factors in loblolly pine. Tappi, 88.
Oliver, W. C., & Pharr, G. M. (1992). An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research, 7(6), 1564-1583.
Page, D. H., Elhosseiny, F., Winkler, K., & Lancaster, A. P. S. (1977). Elastic-Modulus of Single Wood Pulp Fibers. Tappi, 60(4), 114-117.
Page, T. F., Oliver, W. C., & Mchargue, C. J. (1992). The Deformation-Behavior of Ceramic Crystals Subjected to Very Low Load (Nano)Indentations. Journal of Materials Research, 7(2), 450-473.
Pleasants, S., Batchelor, W. J., & Parker, I. H. (1998). Measuring the fibril angle of bleached fibres using micro-Raman spectroscopy. Appita Journal, 51(5), 373-376.
Preston, R. D. (1934). The organization of the cell wall of the conifer tracheid. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 224, 131-U145.
Preston, R. D. (1952). The molecular Architecture of plant cell walls. London: Chapman and Hall.
Reiterer, A., Jakob, H. F., Stanzl-Tschegg, S. E., & Fratzl, P. (1998). Spiral angle of elementary cellulose fibrils in cell walls of Picea abies determined by small-angle X-ray scattering. Wood Science and Technology, 32(5), 335-345.
Reiterer, A., Lichtenegger, H., Tschegg, S., & Fratzl, P. (1999). Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 79(9), 2173-2184.
Sahlberg, U., Salmen, L., & Oscarsson, A. (1997). The fibrillar orientation in the S2-layer of wood fibres as determined by x-ray diffraction analysis. Wood Science and Technology, 31(2), 77-86.
Schimleck, L. R., Evans, R., & Ilic, J. (2001). Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 31(10), 1671-1675.
Senft, J. F., & Bendtsen, B. A. (1985). Measuring Microfibrillar Angles Using Light-Microscopy. Wood and Fiber Science, 17(4), 564-567.
Spurr, A. R. (1969). A Low-Viscosity Epoxy Resin Embedding Medium for Electron Microscopy. Journal of Ultrastructure Research, 26(1-2), 31-&.
Swadener, J. G., Rho, J. Y., & Pharr, G. M. (2001). Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. Journal of Biomedical Materials Research, 57(1), 108-112.
Tabor, D. (1977). Surface Forces and Surface Interactions. Journal of Colloid and Interface Science, 58(1), 2-13.
Tze, W. T. Y., Wang, S., Rials, T. G., Pharr, G. M., & Kelley, S. S. (2007). Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements. Composites Part a-Applied Science and Manufacturing, 38(3), 945-953.
Vlassak, J. J., & Nix, W. D. (1993). Indentation Modulus of Elastically Anisotropic Half-Spaces. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 67(5), 1045-1056.
Wardrop, A. B. (1952). The Low-Angle Scattering of X-Rays by Conifer Tracheids. Textile Research Journal, 22(4), 288-291.
Wimmer, R., Lucas, B. N., Tsui, T. Y., & Oliver, W. C. (1997). Longitudinal hardness and Young''s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Science and Technology, 31(2), 131-141.
Wu, Y., Wang, S. Q., Zhou, D. G., Xing, C., & Zhang, Y. (2009). Use of Nanoindentation and Silviscan to Determine the Mechanical Properties of 10 Hardwood Species. Wood and Fiber Science, 41(1), 64-73.