跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/29 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宛詩
研究生(外文):Wan-shih Chen
論文名稱:人類臍帶血CD34+細胞對創傷性腦損傷大鼠血管生成與神經再生之研究
論文名稱(外文):Human umbilical cord blood-derived CD34+ cells attenuate inflammation but stimulate both angiogenesis and neurogenesis after traumatic brain injury in rats
指導教授:陳勝咸李冠漢李冠漢引用關係
指導教授(外文):Sheng-hsien Chenkuan-han Lee
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:藥物科技研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:血管生成神經再生創傷性腦損傷CD34+造血幹細胞發炎細胞凋亡
外文關鍵詞:inflammationapoptosisCD34+ cellsTraumatic brain injuryangiogenesisneurogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:671
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
過去研究顯示,臍帶血含有低於0.2%的造血幹細胞(CD34+),在液體撞擊腦創傷(FPI)的動物實驗模式,具有減少神經受損的功效。本研究主要是純化臍帶血的CD34+細胞(大於95%),研究幹細胞改善FPI大鼠的機轉。實驗大鼠共分三組:(1)對照組;(2)FPI並移植CD34-細胞 (5x105臍帶血淋巴球與單核球,含有0.2%CD34+細胞);(3)FPI並移植CD34+細胞(5x105臍帶血淋巴球與單核球,含有95%CD34+細胞)。FPI四天後評估實驗大鼠的行為障礙與腦梗塞、發炎、細胞凋亡、血管生成和神經再生。與對照組相比,CD34-細胞治療FPI大鼠,仍有運動與認知障礙、腦梗塞、細胞凋亡和發炎現象。藉由CD34+細胞治療,可以明顯減緩FPI導致的神經損傷與腦梗塞、細胞凋亡和發炎現象。此外,CD34+細胞可以移至受損腦部,有效地促使受損區域的血管新生與神經再生。
本研究結果顯示,純化臍帶血CD34+造血幹細胞,對於減緩創傷性腦損傷的大鼠,可能具有療效。
Umbilical cord blood contained <0.2% CD34+ cells have been shown to be beneficial in reducing neurological deficits in animals after fluid percussion injury(FPI). This study aimed to generate cord blood-derived CD34+ cells(>95%)and to investigate the mechanisms underlying their beneficial effects in treating FPI in rats. Rats were divided into three groups:(1)sham operation; (2)FPI+CD34- cells(5×105 cord blood lymphocytes and monocytes that containing <0.2% CD34+ cells); and (3) FPI+CD34+ cells(5×105 cord blood lymphocytes and monocytes that contained 95% CD34+ cells). Behavioral dysfunction and brain infarction, inflammation, apoptosis, angiogenesis, and neurogenesis were evaluated 4 days post FPI. As compared to sham operation controls, CD34- -treated FPI rats had motor and cognitive dysfunctions and cerebral infarction, apoptosis, and inflammation. FPI-induced neurological dysfunction and cerebral infarction, apoptosis, and inflammation could be significantly attenuated by CD34+ cell therapy. In addition, CD34+ cells migrated to the injured brain regions and significantly promoted both angiogenesis and neurogenesis in the injured brain.
The results indicate that therapy using umbilical cord blood-derived CD34+ cells may be beneficial in attenuating traumatic brain injury in rats.
中文摘要…………………………………………………………………I
英文摘要 ……………………………………………………………… II
誌謝 …………………………………………………………………… IV
目錄 …………………………………………………………………… V
圖目錄………………………………………………………………… VIII
表目錄………………………………………………………………… XI
常用縮寫及專有名詞………………………………………………… XII
第一章 緒論 …………………………………………………… 1
第一節 創傷性腦損傷………………………………………… 4
第二節 幹細胞介紹…………………………………………… 6
第三節 大腦海馬介紹………………………………………… 12
第四節 研究目的……………………………………………… 14
第二章 材料與方法…………………………………………… 15
第一節 實驗材料……………………………………………… 15
第一項 實驗藥品……………………………………………… 15
第二項 實驗儀器……………………………………………… 16
第三項 實驗動物……………………………………………… 19
第二節 實驗方法……………………………………………… 20
第一項 手術…………………………………………………… 20
第二項 生理參數監測………………………………………… 22
第三項 微透析測量大腦海馬回之麩氨酸、甘油、乳酸鹽/焦葡萄酸鹽和一氧化氮代謝
物………………… 23
第四項 人類造血幹細胞之準備……………………………… 24
第五項 實驗分組……………………………………………… 25
第六項 實驗過程……………………………………………… 26
第七項 運動功能的評估……………………………………… 28
第八項 認知功能的評估……………………………………… 29
第九項 內皮前驅細胞………………………………………… 30
第十項 腦梗塞評估…………………………………………… 31
第十一項 凋亡細胞之凋亡檢測………………………………… 32
第十二項 溴脫氧尿嘧啶核苷標記……………………………… 32
第十三項 免疫組織化學染色…………………………………… 33
第十四項 細胞激素的測定……………………………………… 35
第十五項 統計分析……………………………………………… 36
第三章 實驗結果……………………………………………… 37
第一節 CD34+細胞改善FPI大鼠所引發的顱內壓升高和腦部血
灌注降低……………………………………………… 37
第二節 CD34+細胞改善FPI大鼠所引發的腦缺血和神經元損
傷……………………………………………………… 39
第三節 CD34+細胞改善FPI引發的運動和認知功能障礙…… 41
第四節 CD34+細胞改善FPI引發的腦梗塞…………………… 45
第五節 CD34+細胞改善FPI引發的腦神經細胞凋亡………… 47
第六節 CD34+細胞治療FPI刺激血管生成…………………… 52
第七節 CD34+細胞治療FPI刺激神經再生…………………… 56
第八節 CD34+細胞改善FPI引發的炎症反應………………… 61
第九節 CD34+細胞治療FPI提高循環內皮先祖細胞………… 63
第十節 經由免疫組織化學染色測定CD34+細胞到達FPI損傷
區域…………………………………………………… 65
第四章 討論…………………………………………………… 67
第五章 結論…………………………………………………… 72
第六章 參考文獻……………………………………………… 73
英文部分……………………………………………… 73
中文部分……………………………………………… 86
1.Brain Injury Association of America. Types of Brain Injury. Available at: http://www.biausa.org/Pages/types_of_brain_injury.html
2.Broxmeyer, H.E., Douglas, G.W., Hangoc, G., Cooper, S., Bard, J., English, D., Arny, M., Thomas, L., and Boyse, E.A. (1989). Human umbilical cord blood as a potential source of transplantable haematopoietic stem/progenitor cells. Proc. Natl. Acad. Sci. U.S.A. 86, 382-3832.
3.Bullock, R., Zauner, A., Woodward, J., and Young, H.F. (1995). Massive persistent release of excitatory amino acids following human occlusive stroke. Stroke 26, 2187-2189.
4.Chen, L.W., Egan, L., Li, Z.W., Greten, F.R., Kagnoff, M.F., and Karin, M. (2003). The two faces of IKK and NF-kappa B inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat. Med. 9, 575-581.
5.Chen, S.H., Chang, C.Y., Chang, H.K., Chen, W.C., Lin, M.T., Wang, J.J., Chen, J.C., and Chang, F.M. (2009). Premarin stimulates estrogen receptor-alpha to protect against traumatic brain injury in male rats. Crit. Care Med. 37, 3097-3106.
6.Chio, C.C., Kuo, J.R., Hsiao, S.H., Chang, C.P., and Lin, M.T. (2007). Effect of brain cooling on brain ischemia and damage markers after fluid percussion brain injury in rats. Shock. 28, 284-290.
7.Chou Y.T., Lai S.T., Lee C.C., Lin M.T. (2003). Hypothermia attenuates circulatory shock and cerebral ischemia in experimental heatstroke. Shock. 19, 388-393.
8.Ernest A. Mc Culloch, James E. Till. (1960).The Radiation Sensitivity of Normal Mouse Bone Marrow Cells, Determined by Quantitative Marrow Transplantation. radiation research.13, 115-125.
9.Erices, A., Conget, P., and Minguell, J.J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109, 235-242.
10.Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313-1317.
11.Evans M.J., Kaufman M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-6.
12.Frazier-Jessen M.R., Kovacs E.J. (1995). Estrogen modulation of JE/monocyte chemoattractant protein-1 mRNA expression in murin macrophages. J Immunol. 154:1838-45.
13.Gennarelli, T.A., and Graham, D.I. (1998). Neuropathology of the head injuries. Semin. Clin. Neuropsychiatry 3, 160-175.
14.Gregory J., Mary S., Sue Gazman., Family Caregiver., Resource Centers. (1997). Traumatic Brain Injury. Family Caregiver Alliance. 1-4. Brain Injury Association. http://www.caregiver.org
15.Hallam, T.M., Floyd, C.L., Folkerts, M.M., Lee, L.L., Gong, Q.Z., Lyeth, B.G., Muizelaar, J.P., and Berman, R.F. (2004). Comparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. J. Neurotrauma 21, 521-539.
16.Harris D.T. (2009). Non-haematological uses of cord blood stem cells. British Journal of Haematology, 147, 177-184. Review
17.Harting, M.T., Baumgartner, J.E., Worth, L.L., Ewing-Cobbs, L., Gee, A.P., Day, M.C. & Cox, C.S. (2008). Cell therapies for traumatic brain injury. Neurosurgical Focus, 24, E18.
18.Hillered, L., and Persson, L. (1999). Neurochemicla monitoring of the acutely injured human brain. Scan. J. Clin. Lab. Invest. Suppl. 229, 9-18.
19.Hillered, L., Valtysson, J., Enblad, P., and Persson, L. (1998). Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J. Neurol. Neurosurg Psychiatry 64, 486-491.
20.Ivins, B.J., Schwab, K., Warden, D., Harvey, S., Hoilien, M., Powell, J., et al. (2003). Traumatic brain injury in U.S. army paratroopers: prevalence and character. Journal of Trauma Injury, Infection and Critical Care; 55(4):617-21.
21.Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 99, 11946-11950.
22.Kadhim, H.J., Duchateau, J., and Sébire, G. (2008). Cytokines and brain injury: invited review. J. Inten. Care Med. 23, 236-249.
23.Keane, R.W., Kraydieh, S., Lotocki, G., Alonso, O.F., Aldana, P., and Dietrich, W.D. (2001). Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J. Cereb. Blood Flow Metab. 21, 1189-1198.
24.Keeling, K.L., Hicks, R.R., Mahesh, J., Billings, B.B., and Kotwal, G.J. (2000). Local neutrophil influx following lateral fluid-percussion brain injury in rats is associated with accumulation of complement activation fragments of the third component (C3) of the complement system. J. Neuroimmunol. 105, 20-30.
25.Kuh, S.U., Cho, Y.E., Yoon, D.H., Kim, K.N. and Ha, Y. (2005). Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochirurgica (Wein), 14, 985–992.
26.Kuo, J.R., Lo, C.J., Chang, C.P., Lin, H.J., Lin, M.T., and Chio, C.C. (2010). Brain cooling-stimulated angiogenesis and neurogenesis attenuated traumatic brain injury in rats. J. Trauma 69, 1467-1472.
27.Kuzu, M.A., Köksoy, C., Kuzu, I., Gürhan, I., Ergün, H., and Demirpence, E. (2002). Role of integrins and intracellular adhesion molecule-1 in lung injury after intestinal ischemia-reperfusion. Am. J. Surg. 183, 70-74.
28.Langlois, J.A., Rutland-Brown, W., Thomas, KE. (2006). Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.
29.Leker, R.R., and Shohami, E. (2002). Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Brain Res. Rev. 39, 55-73.
30.Lenzlinger, P.M., Morganti-Kossmann, M.C., Laurer, H.L., and McIntosh, T.K. (2001). The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 24, 169-181. Review
31.Li, Y., Douglas, S.D., and Ho, W. (2000). Human stem cells express substance P gene and its receptor. J. Hemother Stem Cell Res. 9, 445-452.
32.Lian, Q., Zhang, Y., Zhang, J., Zhang, H.K., Wu, X., Zhang, Y., Lam, F.F., Kang, S., Xia, J.C., Lai, W.H., Au, K.W., Chow, Y.Y., Siu, C.W., Lee, C.N., and Tse, H.F. (2010). Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121, 1113-1123.
33.Lu, D., Sanberg, P.R., Mahmood, A., Li, Y., Wang, L., Sanchez-Ramos, J., and Chopp, M. (2002). Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant 11, 275-281.
34.McIntosh, T.K., Noble, L., Andrews, B., and Faden, A.I. (1987). Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent. Nerv. Syst. Trauma 4, 119-134.
35.Meier, C., Middelanis, J., Wasielewski, B., Neuhoff, S., Roth-Haerer, A., Gantert, M., Dinse, H.R., Dermietzel, R. & Jensen, A. (2006). Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatric Research, 59, 244–249.
36.Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. ProcNatlAcadSci U S A 78:7634-8.
37.Mclntosh, T.K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., Faden, AL. (1989). Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28:233-244.
38.Morganti-Kossmann, M.C., Rancan, M., Otto, V.I., Stahel, P.F., and Kossmann, T. (2001). Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16, 165-177. Review
39.Morganti-Kossmann, M.C., Satgunaseelan, L., Bye, N., and Kossmann, T. (2007). Modulation of immune response by head injury. Injury 38, 1392-1400.
40.Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47-60.
41.Mullane, K.M., Kraemer, R., and Smith, B. (1985). Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J. Pharmacol. Methods 14, 157-167.
42.Murasawa, S., and Asahara, T. (2005). Endothelial progenitor cells for vasculogenesis. Physiology (Bethesda) 20, 36-42.
43.Nortje, J., and Menon, D.K. (2004). Traumatic brain injury: physiology, mechanisms, and outcome. Curr. Opin. Neurol. 17, 711-718.
44.Olanders, K., Sun, Z., Börjesson, A., Dib, M., Andersson, E., Lasson, A., Ohlsson, T., and Andersson, R. (2002). The effect of intestinal ischemia and reperfusion injury on ICAM-1 expression, endothelial barrier function, neutrophil tissue influx, and protease inhibitor levels in rats. Shock 18, 86-92.
45.Owen, R.D. (1945). Immunogeneticconsequesnces of vascular anastomosis between bovine twins. Science. 102:400-401.
46.Palzur, E., Vlodavsky, E., Mulla, H., Arieli, R., Feinsod, M., and Soustiel, J.F. (2004). Hyperbaric oxygen therapy for reduction of secondary brain damage in head injury: an animal model of brain contusion. J. Neurotrauma 21, 41-48.
47.Paxinos, G., and Watson, C. (1982). The rat brain in stereotaxic coordinates. New Yourk: Acdemic Press.
48.Quiñones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., Romero-Rodriguez, R., Berger, M.S., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415-434.
49.Raghupathi, R. (2004). Cell death mechanisms following traumatic brain injury. Brain Pathol. 14, 215-222.
50.Ray, S.K., Dixon, C.E., and Banik, N.L. (2002). Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol. Histopathol. 17, 1137-1152.
51.Stuart lra Fox。(2002)。人體生理學。台灣:美商麥格羅∙希爾國際股份有限公司;202-203。
52.Squire, L. and Kandel, E. (2000). Memory: From Mind to Molecules. New York: Scientific American Library. http://www.memorylossonline.com/glossary/hippocampus.html.
53.Sanai, N., Tramontin, A.D., Quiñones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Lawton, M.T., McDermott, M.W., Parsa, A.T., Manuel-Garcían Verdugo, J., Berger, M.S., and Alvarez-Buylla, A. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740-744.
54.Staimirovic, D., and Satoh, K. (2000). Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol. 10, 113-126. Review
55.Soltesz, I., and Deschenes, M. (1993). Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 70(1), 97-116.
56.Taguchi, A., Soma, T., Tanaka, H., Kanda, T., Nishimura, H., Yoshikawa, H., Tsukamoto, Y., Iso, H., Fujimori, Y., Stern, D.M., Naritomi, H., and Matsuyama, T. (2004). Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 114, 330-338.
57.Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282:1145-7.
58.Thurman, D.J., Alverson, C., Dunn, K.A., Guerrero, J., Sniezek, J.E. (1999). Traumatic Brain Injury in the United States: A Public Health Perspective. J Head Trauma Rehabil. 14(6): 602-15.
59.Togashi, H., Mori, K., Ueno, K., Matsumoto, M., Suda, N., Saito, H., and Yoshioka, M. (1998). Consecutive evaluation of nitric oxide production after transient cerebral ischemia in the rat hippocampus using in vivo brain microdialysis. Neurosci. Lett. 240, 53-57.
60.U.S. Department of Defense. (2005). Defense and Veterans Brain Injury Center (DVBIC). Unpublished. Washington (DC).
61.Vlodavsky, E., Palzur, E., and Soustiel, J.F. (2006). Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol. Appl. Neurobiol. 32, 40-50.
62.Walczak, P., Chen, N., Hudson, J.E., Willing, A.E., Garbuzova-Davis, S.N., Song, S., Sanberg, P.R., Sanchez-Ramos, J., Bickford, P.C., and Zigova, I. (2004). Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous neural precursors. J. Neurosci. Res. 76, 244-254.
63.Wang, Y., Lin, S.Z., Chiou, A.L., Williams, L.R., and Hoffer, B.J. (1997). Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J. Neurosci. 17, 4341-4348.
64.Wickelgren I. (1997). Estrogen stakes claim to cognition. Science. 276:675-8.
65.Willing, A.E., Lixian, J., Milliken, M., Poulos, S., Zigova, T., Song, S., Hart, C., Sanchez-Ramos, J., and Sanberg, P.R. (2003). Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J. Neurosci. Res. 73, 296-307.
66.Wu, J.Y., Tsou, M.Y., Chen, T.H., Chen, S.J., Tsao, C.M., and Wu, C.C. (2008). Therapeutic effects of melatonin on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats. J. Pineal. Res. 45, 106-116.
67.Wyble, C.W., Desai, T.R., Clark, E.T., Hynes, K.L., and Gewertz, B.L. (1996). Physiologic concentrations of TNF alpha and IL-1beta released from reperfused human intestine upregulate E-selectin and ICAM-1. J. Surg. Res. 63, 333-338.
68.Yunoki, M., Kawauchi, M., Ukita, N., Noguchi, Y., Nishio, S., Ono, Y., Asari, S., Ohmoto, T., Asanuma, M., and Ogawa, N. (1998). Effects of lecithinized SOD on sequential change in SOD activity after cerebral contusion in rats. Acta Neurochir. Suppl. (Wien) 71, 142-145.
69.Zauner, A., and Bullock, R. (1995). The role of excitatory amino acids in severe brain trauma: opportunities for therapy: a review. J. Neurotrauma 12, 547-554.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊