跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳昭儀
研究生(外文):Chao-Yi Wu
論文名稱:在智慧型運輸系統中以支援向量迴歸近似加權幾何精度因子與行動台位置
論文名稱(外文):Applying Support Vector Regression to Weighted Geometric Dilution of Precision and Mobile Station Location Approximation in Intelligent Transportation Systems
指導教授:郝沛毅郝沛毅引用關係
指導教授(外文):Pei-Yi Hao
口試委員:李冠榮洪盟峰郝沛毅
口試委員(外文):Kuan-Rung LeeMong-Fong HorngPei-Yi Hao
口試日期:2013-07-10
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:資訊管理研究所碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:智慧型運輸系統支援向量迴歸加權幾何精度因子
外文關鍵詞:intelligent transportation system (ITS)support vector regression (SVR)weighted geometric dilution of precision (WGDOP)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
幾何精度因子 (geometric dilution of precision, GDOP) 為全球定位系統 (global positioning system, GPS) 挑選最佳量測單元的重要準則。如果量測變異數是不同的,本研究選擇利用加權幾何精度因子 (weighted GDOP, WGDOP) 取代幾何精度因子,以挑選合適的定位量測單元。以反矩陣計算加權幾何精度因子的傳統方法,需要龐大計算量與時間,對於即時定位而言是一大負擔。

在本研究中,將原本以彈性倒傳遞 (resilient back-propagation, Rprop) 演算法為基礎的六種映射架構,擴充至以支援向量迴歸 (support vector regression, SVR) 近似加權幾何精度因子。在無線通訊系統中,本研究從七個基地台 (base station, BS) 中挑選出四個基地台以估測行動台 (mobile station, MS) 位置。無線通訊網路中的位置估測,對於行動定位服務具有關鍵作用。許多不同的行動定位服務應用已相當發達,包括E-911公共安全服務、智慧型運輸系統 (intelligent transportation system, ITS) 及醫療照護系統。為了進一步降低複雜度,本研究優先選擇服務基地台,再結合其他三個基地台進行估測行動台位置。因此,量測子集合的數目將大幅減少,且不會影響定位精度。藉由加權幾何精度因子最小化法則,行動台的位置可利用位置線法 (lines of position algorithm, LOP) 與距離權重法進行估測而取得。
The geometric dilution of precision (GDOP) concept was originally used as a criterion for selecting the optimal geometric configuration of satellites in global positioning system (GPS). If the measurement variances are not equal in each other, we can choose the weighted GDOP (WGDOP) instead of GDOP, which could be the most appropriate selection criterion of location measurement units. The conventional matrix inversion method for WGDOP calculation has a large amount of operation and requires long time for computing, which would be a burden for real time application.

In this research, the original six kinds of input-output mapping based on resilient back-propagation (Rprop) are extended to WGDOP based on support vector regression (SVR). From simulation results, the proposed architectures for WGDOP approximation based on SVR always yield superior estimation accuracy. This research use a set of four base stations (BS) selected from seven BS to estimate mobile station (MS) location in cellular communications system. The mobile positioning of a wireless network plays a key role in providing location-based services. Different applications of location-based services have been well developed, including E-911 subscriber safety services, intelligent transportation system (ITS) and medical treatment system. To further reduce the complexity, our approach is to first select the serving BS and combines it with three other measurements to estimate MS location. As such, the number of subsets is reduced greatly without compromising the location estimation accuracy. With the minimum WGDOP algorithm, MS location can be estimated by the linear lines of position algorithm (LOP) and distance-weighted method.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 v
圖目錄 v

一、緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究流程 4
1.4 論文架構 5

二、文獻探討 6
2.1 基於網路的定位方法 6
2.2 基於衛星的定位方法 11
2.3 無線通道環境的特性 12
2.4 行動定位服務 15
2.5 幾何精度因子與加權幾何精度因子 16
2.6 支援向量迴歸 20

三、實驗方法 27
3.1 近似加權幾何精度因子的映射架構 27
3.2 基地台的挑選規則 32
3.3 幾何定位法 32

四、實驗結果 37
4.1 電腦模擬環境 37
4.2 模擬結果分析 38

五、結論與建議 43
5.1 研究結論 43
5.2 後續建議 44

參考文獻 45
附錄 50
[1] 交通部運輸研究所,2012,101年運輸政策白皮書,交通部,臺北市。
[2] No. FCC Docket, 1996 “94-102 Revision of the commission’s rules to insure compatibility with enhanced 911 emergency calling systems,” Federal Communications Commission Tech. Rep. RM-8143, July.
[3] Y. Zhao, 2002, “Standardization of mobile phone positioning for 3G systems,” IEEE Communications Magazine, vol. 40, no. 7, pp. 108-116, July.
[4] J. J. Caffery, and G. L. Stuber, 1998, “Overview of radiolocation in CDMA cellular systems,” IEEE Communications Magazine, vol. 36, no. 4, pp. 38-45, April.
[5] E. D. Kaplan, and C. J. Hegarty, 2005 Understanding GPS: principles and applications, Artech house.
[6] C. S. Chen, S. L. Su, H. N. Shou, and W. H. Liu, 2010, “Resilient back-propagation neural network or approximation weighted geometric dilution of precision,” Proc. IEEE International Conference Computer Science and Information Technology, vol. 7, pp. 53-58, July.
[7] C. S. Chen, J. M. Lin, and C. T. Lee, 2013, “Neural network for WGDOP approximation and mobile Location,” Mathematical Problems in Engineering, vol. 2013, July.
[8] M. N. Borenovic, M. I. Simic, A. M. Neskovic, and M. M. Petrovic, 2005, “Enhanced cell-ID + TA GSM positioning technique,” Proc. IEEE International Conference on Computer as a Tool, vol. 2, pp. 1176-1179, November.
[9] W. G. Figel, N. H. Shepherd, and W. F. Trammell, 1968, “Vehicle location by a signal attenuation method,” Proc. IEEE Conference Vehicular Technology, vol. 19, pp. 105-109, November.
[10] K. J. Krizman, T. E. Biedka, and T. S. Rappaport, 1997, “Wireless position location: fundamentals, implementation strategies, and sources of error,” Proc. IEEE Vehicular Technology Conference, vol. 2, pp. 919-923, May.
[11] S. Al-Jazzar, J. J. Caffery, and H. R. You, 2002, “A scattering model based approach to NLOS mitigation in TOA location systems,” Proc. IEEE Vehicular Technology Conference, vol. 2, pp. 861-865, May.
[12] B. T. Fang, 1990, “Simple solution for hyperbolic and related position fixes,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 5, pp. 748-753, September.
[13] G. L. Turin, W. S. Jewell, and T. L. Johnston, 1972, “Simulation of urban vehicle-monitoring systems,” IEEE Transactions on Vehicular Technology, vol. 21, no. 1, pp. 9-16, February.
[14] J. J. Caffery, and G. L. Stuber, 1998, “Subscriber location in CDMA cellular networks,” IEEE Transactions on Vehicular Technology, vol. 47, no. 2, pp. 406-416, May.
[15] D. J. Torrieri, 1984, “Statistical theory of passive location systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-20, no. 2, pp. 183-198, March.
[16] K. C. Ho, and Y. T. Chan, 1993, “Solution and performance analysis of geolocation by TDOA,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1311-1322, October.
[17] Y. T. Chan, and K. C. Ho, 1994, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42, no. 8, pp. 1905-1915, August.
[18] R. Muhamed, and T. S. Rappaport, 1996, “Comparison of conventional subspace-based DOA estimation algorithms with those employing property-restoral techniques: simulation and measurements,” Proc. IEEE International Conference on Universal Personal Communications, vol. 2, pp. 1004-1008, October.
[19] M. Silventoinen, and T. Rantalainen, 1996, “Mobile station emergency locating in GSM,” Proc. IEEE International Conference on Personal Wireless Communications, pp. 232-238, February.
[20] S. S. Woo, H. R. You, and J. S. Koh, 2000, “The NLOS mitigation technique for position location using IS-95 CDMA networks,” Proc. IEEE Vehicular Technology Conference, vol. 6, pp. 2556-2560, September.
[21] M. P. Wylie, and J. Holtzman, 1996, “The nonline of sight problem in mobile location estimation,” Proc. IEEE Intternational Conference on Universal Personal Communication, vol. 2, pp. 827-831.
[22] S. Venkatraman, J. J. Caffery, and H. R. You, 2004, “A novel TOA location algorithm using LOS range estimation for NLOS environments,” IEEE Transactions on Vehicular Technology, vol. 53, pp. 1515-1524, September.
[23] S. Riter, and J. McCoy, 1977, “Automatic vehicle location—An overview,” IEEE Transactions on Vehicular Technology, vol. 26, no. 1, pp. 7-11, February.
[24] J. Ahn, J. Heo, S. Lim, J. Seo, and W. Kim, 2008, “A study of healthcare system for patient location data based on LBS,” Proc. International Conference on Consumer Electronics, pp. 1-2, January.
[25] J. S. Maltz, T. S. C. Ng, D. J. Li, J. Wang, K. Wang, W. Bergeron, R. Martin, and T. F. Budinger, 2006, “The trauma patient tracking system: implementing a wireless monitoring infrastructure for emergency response,” Proc. IEEE International Conference Engineering in Medicine and Biology Society, pp. 2441-2446, January.
[26] I. H. Shin, J. H. Lee, and H. C. Kim, 2007, “Ubiquitous monitoring system for chronic obstructive pulmonary disease and heart disease patients,” Proc. IEEE International Conference Engineering in Medicine and Biology Society, pp. 3689-3692, August.
[27] S. H. Chew, P. A. Chong, E. Gunawan, K. W. Goh, Y. Kim, and C. B. Soh, 2006, “A hybrid mobile-based patient location tracking system for personal healthcare applications,” Proc. IEEE International Conference Engineering in Medicine and Biology Society, pp. 5188-5191, September.
[28] J. M. Zagami, S. A. Parl, J. J. Bussgang, and K. D. Melillo, 1998, “Providing universal location services using a wireless E911 location network,” IEEE Communications Magazine, vol. 36, no. 4, pp. 66-71, April.
[29] D. Y. Hsu, 1994, “Relations between dilutions of precision and volume of the tetrahedron formed by four satellites,” Proc. IEEE Position Location and Navigation Symposium, pp. 669-676, April.
[30] G. M. Siouris, 1993, Aerospace avionics systems: a modern synthesis, Academic press, New York.
[31] C. Park, I. Kim, J. G. Lee, and G. I. Jee, 1996, “A satellite selection criterion incorporating the effect of elevation angle in GPS positioning,” Control Engineering Practice, vol. 4, no. 12, pp. 1741-1746, December.
[32] H. Sairo, D. Akopian, and J. Takala, 2003, “Weighted dilution of precision as quality measure in satellite positioning,” IEE Proceedings-Radar, Sonar and Navigation, vol. 150, no. 6, pp. 430-436, December.
[33] Y. Yang, and L. Miao, 2004, “GDOP results in all-in-view positioning and in four optimum satellites positioning with GPS PRN codes ranging,” Proc. Position Location and Navigation Symposium, pp. 723-727, April.
[34] K. Kawamura, and T. Tanaka, 2006, “Study on the improvement of measurement accuracy in GPS,” Proc. IEEE International Joint Conference SICE-ICASE, pp. 1372-1375, October.
[35] X. Bo, and B. Shao, 2009, “Satellite selection algorithm for combined GPS-Galileo navigation receiver,” Proc. International Conference on Autonomous Robots and Agents, pp.149-154, February.
[36] H. Lu, and X. Liu, 2012, “Compass augmented regional constellation optimization by a multi-objective algorithm based on decomposition and PSO,” Chinese Journal of Electronics, vol. 21, no.2, pp. 374-378, April.
[37] Y. Lu, H. Wu, and Z. Huang, 2012, “An improved optimization method based on fuzzy clustering in MLAT for A-SMGCS,” Proc. International Conference on Fuzzy Systems and Knowledge Discovery, pp. 424-428, May.
[38] C. D. Wann, 2012, “Mobile sensing systems based on improved GDOP for target localization and tracking,” Proc. IEEE Sensors, pp. 1-4, October.
[39] K. Tiwary, and G. Sharada, 2013, “Mitigating effect of high GDOP on position fix accuracy of pseudolite only navigation system,” Proc. International Journal of Computer and Electronics Research, vol. 2, no. 2, pp.74-80, April.
[40] V. N. Vapnik, 1995, The nature of statistical learning theory, Springer.
[41] P. Y. Hao, 2010, “New support vector algorithms with parametric insensitive/margin model,” Neural Networks, vol. 23, pp. 60-73, January.
[42] J. A. K. Suykens, B. J. De, L. Lukas, and J. Vandewalle, 2002, “Weighted least squares support vector machines: robustness and sparse approximation,” Neurocomputing, vol. 48, no. 1-4, pp. 85-105, October.
[43] D. Simon, and H. El-Sherief, 1995, “Navigation satellite selection using neural networks,” Neurocomputing, vol. 7, no. 3, pp. 247-258, April.
[44] D. J. Jwo, and K. P. Chin, 2002, “Applying back-propagation neural networks to GDOP approximation,” Journal of Navigation, vol. 55, no. 1, pp. 97-108, January.
[45] C. H. Wu, W. H. Su, and Y. W. Ho, 2011, “A study on GPS GDOP approximation using support-vector machines,” IEEE Transaction on Instrumentation and Measurement, vol. 60, no. 1, pp. 137-145, January.
[46] P. Y. Hao, and C. Y. Wu, 2012, “GPS GDOP approximation using support vector regression algorithm with parametric insensitive model,” Proc. International Conference on Machine Learning and Cybernetics, vol. 1, pp. 315-320, July.
[47] C. S. Chen, and S. L. Su, 2010, “Resilient back-propagation neural network for approximation 2-D GDOP,” Proc. International MultiConference Engineers and Computer Scientists, vol. 2, pp. 900-904, March.
[48] S. Venkatraman, and J. J. Caffery, 2004, “Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments,” Proc. IEEE Conference Wireless Communications and Networking, vol. 1, pp. 274¬-278, March.
[49] C. S. Chen, S. L. Su, and Y. F. Huang, 2009, “Hybrid TOA/AOA geometrical positioning schemes for mobile location,” IEICE Transaction on Communication, vol. E92-B, no 2, pp. 396-402, February.
[50] J. J. Caffery, 2000, “A new approach to the geometry of TOA location,” Proc. IEEE Vehicular Technology Conference, pp. 1943-1949, September.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top