跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:諶香伶
研究生(外文):Shenn, Hsiang-Ling
論文名稱:整合傳統財務指標與智慧資本指標之財務危機預警模式---類神經網路模型與存活分析之比較
論文名稱(外文):Integration Traditional Financial Indices and Intellectual Capital Indices in Coporate Financial Distress Diagnostic Model---Comparing Survival Analysis and Neural Network
指導教授:古永嘉古永嘉引用關係
指導教授(外文):Goo, Yeong-Jia
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:144
中文關鍵詞:類神經網路倒傳遞類神經網路存活分析Cox等比例危險模型智慧資本財務危機預警
外文關鍵詞:Neural NetworkBack-Propagation Neural NetSurvival AnalysisCox Proportional Hazard ModelIntellectual CapitalFinancial Distress Diagnostic
相關次數:
  • 被引用被引用:8
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:9
企業發生財務危機,不僅僅是傷害公司利害關係人(stakeholder)之權益,也讓社會付出成本;隨著資訊化的時代來臨,企業面對的環境愈顯複雜,伴隨而來的是知識經濟時代,而帳面價值與市值的差異即為智慧資本,由資策會(MIC)經濟部技術處智慧資本專案所建構的智慧資本專案,亦指出智慧資本是企業所擁有的核心能力與知識資源所建構的動態能力。
由於產業別的不同,因此對於各項指標之代表意義亦有所不同;傳統的財務報表顯示的僅是歷史的資訊,而財務危機的預警,牽涉到的是對於未來的預測,而智慧資本正顯示了企業將來的發展潛力。
本研究應用類神經網路模型中之倒傳遞類神經與存活分析中的Cox等比例危險模型以建構預警模式,其中在倒傳遞類神經網路模型加入基因演算法的概念以解決網路不易收斂的問題,且非固定模型中的轉換率與學習率藉以增加預測的擊中率。
以倒傳遞類神經網路模型分別對季資料及年資料建立模型,發現加入智慧資本指標之擊中率較僅運用財務指標建立之模型為佳。Cox等比例危險模型方面,對季資料而言,加入智慧資本指標之區別正確力較僅運用財務指標建立模型為佳;年資料方面,失敗前一年為財務與智慧資本指標建立之模型較佳,且能完全正確區別正常與失敗公司;失敗前二年為僅財務指標建立之模型較佳;失敗前三年則無差異。整體而言,倒傳遞類神經網路模型的效果較佳。
When the business happens financial distress, it hurts not only the equity on stakeholders but also brings about cost for society. By information age is coming, the environment which business faced is more complex, and the knowledge-based economy would come along with it . The difference between market value and book value is intellectual capital. MIC also indicates that intellectual capital is company’s dynamic ability which construct by core ability and knowledge resource .
The different kind of industry, different meaning of index exists. The financial report only shows one company’s history information, but the distress diagnostic forecasts the future, and the intellectual capital just shows the future potential development for a company.
This study adapts one of neural network model---back-propagation neural net and one of survival analysis---Cox proportional hazard model to develop diagnostic model. To solve the question on net is not easy to be convergence , the genetic algorithms concept is involved in back-propagation neural net , on the other hand, the transfer rate and learning rate is un-fixed to improve hits ratio.
Using season data and year data to develop financial distress diagnostic model by back-propagation neural net, found hits ratio is higher when the intellectual capital index is included and the result is the same as when using season data to develop by Cox proportional hazard model. Regarding year data, using Cox proportional hazard model in prediction, one year before failure, could totally discriminate between normal and failure company when intellectual capital index is added. Two year before failure, using only financial index in prediction is better, three year before failure, there is no difference even intellectual capital index included. To sum up, the effect on back-propagation neural net is better than Cox proportional hazard model.
第 壹 章 緒論 1
第一節 研究背景與研究動機 1
第二節 研究目的 4
第三節 論文架構 5
第 貳 章 文獻探討 6
第一節 企業失敗 6
第二節 不同統計方法對企業危機預測 8
第三節 智慧資本 24
第四節 小結 33
第 參 章 研究設計與研究方法 35
第一節 研究流程 36
第二節 研究架構與假說 37
第三節 存活分析與Cox等比例危險模型 40
第四節 類神經網路模型 48
第五節 研究樣本及變數選擇 59
第 肆 章 實証分析 70
第一節 敘述統計分析 70
第二節 Cox等比例危險模型---季資料 73
第三節 Cox等比例危險模型---年資料 85
第四節 Cox等比例危險模型小結 96
第五節 倒傳遞類神經網路分析─季資料 100
第六節 倒傳遞類神經網路分析─年資料 106
第七節 倒傳遞類神經網路模型小結 112
第八節 Cox等比例危險模型與倒傳遞類神經網路模型小結 115
第 伍 章 結論與建議 118
第一節 研究結論 118
第二節 研究建議 126
參考文獻 129
附錄 A 我國法律上對企業為機定義的相關法條 138
附錄 B 斯勘地亞智慧資本報告 139
附錄 C Stewart 智慧資本衡量指標 140
附錄 D 加拿大管理會計人員協會提出之智慧資本衡量指標 140
附錄 E 美國訓練與發展協會智慧資本衡量指標 141
附錄 F Battery 公司智慧資本衡量系統 142
附錄 G 我國智慧資本衡量指標重要性調查 143
附錄 H 本研究納入樣本 144
1. Altman, E.I., “Financial Ratios, Discriminate Analysis and the Prediction of Corporate Bankruptcy,” Journal of Finance, Vol.23,No.4, September, 1968, pp589-609.
2. Altman, Edward I., R.G. Haldeman, and P. Narayanan, “Zeta Analysis: A New Model to Identify Bankruptcy”, Journal Finance, September 1968.
3. Altman, Edward I., Corporate Financial Distress: A Complete Guide to Predicting, Avoiding and Dealing with Bankruptcy, New York: Journal of Banking and Finance, June 1977.
4. Bassi, L. and McMurrer, D., “Trainging Investment Can Mean Financial Performance, “ Training and Development, 52(5), 1997,pp40-42.
5. Beaver, W.H., “Financial ratio as Predictors of Failure in Empirical Research in Accounting: Selected studies,” Supplement to Journal of Accounting Research, Vol.4, 1988,pp71-111.
6. Bell, C.R., “Intellectual Capital. Executive Excellence”, 14(1). 1997,pp15.
7. Blum, M., “Failing Company Discriminated Analysis,” Journal of Accounting Research, Vol.12,1974, pp1-25.
8. Bontis, N., “There’s a price on you head: managing Intellectual capital Strategiclly”., Ivey Business Quarterly, Vol.60, No.4, summer 1996, pp40-47.
9. Boudreau, J., and Ramstad, P., “Measuring Intellectual Capital: Learning from Financial History”, Human Resource Management, 36(3), 1997, pp343-356.
10. Branch B.,,“Research-and-Development Activity and profitability:A Distributed Lag Analysis”, Journal of Political Economy, 1974, Vol.82, Iss.5, 999-1011.
11. Brooking, A., P. Board and S. Jones., “the Predictive Potential of Intellectual Capital”. International Journal of Technology Management, 1998, pp115-125.
12. Bukh, P.H., H. T. Larsen and J. Mouritsen., “Constructing Intellectual Capital Statements”. Scandinavian Journal of Managemnent, 2001. pp87-108.
13. Bukh, P.N.D., H. T. Larsen and J. Mouritsen., “Intellectual Capital and the ‘Capable Firm’ : Narrating, Visualizing and Numbering for Managing Knowledge”. Accounting, Organizations and Society, 2001, pp735-762.
14. Catagna, A. D. and Matolcsy, Z. P., "The Market Characteristics of Failed Companies : Extensions and Further Evidence", Journal of Business, Finance and Accounting, 8, 1981, pp467-483.
15. Chung, K.H. and Pruitt, S.W., “A Sample Approximation of Tobin’s Q”Financial Management ,1994, pp70-74.
16. Coats, P. K. and L. F. Fant, “recognizing Financial Distress Patterns Using a Neual Network Tool. “Financial Management, Autumn 1993, pp142-155.
17. Coeff, R., “Human Assets and Management Dilemmas: Coping with Hazaards on the Road to Resource —Based Theory”, Academy of Management Review. 22(2), 1997, pp374-402.
18. Cox, D.R., “Regressions Models and Life Table’s “Journal of Royal Statistics Society, 34(2), 1972,pp187-220.
19. Deakin, E., “A Discriminant Analysis of Predictors of Business Failure”, Journal of Accounting Research, Vol. 10, Spring 1972, pp167-179.
20. Dzinkowski, R., “The Measurement and Management of Intellectual Capital: An Introduction”, Management Accounting, Vol.78, No. 2. Feb 2000, pp32-36.
21. Dzinkowski, R., “The Value of Intellectual Capital”, The Journal of Business Strategy, Vol.21, No.4, Jul/Aug 2000, pp3-4.
22. Edvinsson, Leif and Malone, M., “Intellectual Capital: Realizing Your Company’s True Value by Finding its Hidden Brainpower”, New York: Harper Collins Publishers Inc.,1997.
23. Ellerman, J. and Montgomery, B and Stradley, B, “Linking Intangibles in Executive pay”. Workspan, 2002,Vol.45, No.5, pp8-10.
24. Erkki K.L. and Tejia L., “Bankruptcy Prediction Application of the Taylor’s Expansion in Logistic Regression”, International Review of Financial Analysis, 2000, pp327-349.
25. Fisher, F.M. and J.J Mcgowon, “On the Misuse of Accounting Rate of Returnto Infer Monopoly Profit”.American Economic Review, 73, 1983,pp82-97.
26. Flagg, J.C., Giroux, G. A. and Wiggins, C. E.”Predicting Corporate Bankruptcy using Failing Firms,”Review of Financial Economics, 1992, Fall, pp.67-68.
27. Foster, G., Financial Statement Analysis, Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1978.
28. Frydman, H. Altman, E. I. and Kao D. , “Introducing Recursive Partitioning for Financial Classification: the Case of Financial Distress,” 1985 ,Journal of Finance, Vol.40, No.1, pp.269-291.
29. Grantham, C.E. and Nichols, L. D., “A Framework for the Management of Intellectual Capital in the Health care Industry”. Journal of Health Care Finance, Vol.23, No. 3, Spring 1997, pp1-19.
30. Grabowski, H. G. and Mueller, D. C. , “Industrial research and develop, intangible capital stocks, and firm profit rates,” The Bell Journal of Economics,1978, Vol. 9, pp.328-343.
31. Gupta, L.C., Financial Ratios for Monitoring Corporate Sickness-Toward a More Sstematic Approach, Oxford University Press, 1983.
32. Hubert, Saint-Onge, “tacit Knowledge: The Key to the Strategic Alignment of Intellectual Capital. “Startegy & Leadership, Vol24, No.2, Mar/Apr 1996, pp10-14.
33. Hudson, W.J., Wiley J.&Sons, “Intellectual capital:How to build it,enbance it, use it”,1993 .Internet at : http://www.sveiby.com.au/IntellectualCapital.html.
34. Hurwitz, J., “The Linkage between Management Practices, Intagible Performances and Stock Returns”, Journal of Intellectual Capital, Vol.3, No.1,2002,pp51-61.
35. Jaymeen R Shah; Mirza B Murtaza,A neural network based clustering procedure for bankruptcy prediction,2000,American Business Review; West Haven, pp80-86.
36. Johnson, W.H. “An Integrative Taxonomy of Intellectual Capital: Measuring the Stock and Flow of Intellectual Capital Components in the Firm”, International Journal of Technology Management, Vol. 18, No.5/6/7/8, 1999, pp562-575.
37. Joia, L.A., “Measuring Intagible Coporate Assets: Linking Business Strategy with Intellectual Capital” Journal of Intellectual Capital, 2000, pp68-84.
38. Kaplan, Rober S. & David P. Norton, “The Balanced Scorecard: Translating Strategy Into Action”, Boston, Massachusetts: Havard Business Scholl Press, 1996 p29.
39. Klein & Prusak. ,”Characterizing Intellectual Capita”, 1994 .Ernst & Young Center for Business Innovation.
40. Knight, K.J., “Performance Measures for Increasing Intellectual Capital “. Strategy & Leadership 1999, pp10-15.
41. Koh, H. and S. Tan,“A neural network approach to the prediction of going concern status”, Accounting and Business Research ,1999,21, 211-216.
42. Kun Chang Lee, Ingoo Han & Youngsin Kwon, “Hybrid Neural Network Models For Bankruptcy Predictons”, Decision Support System, 1996, pp63-72.
43. Lane, W.R., S.W. Looney and J.W. Wansley , “An application of the Cox proportional hazards model to bank failure.”,1986, The Journal of Banking and Finance, 511-531.
44. Lang, L. and Robert H., Litzenberger, “Dividend Announcements.”Journal Financial Economics, 14, 1989,pp.181-191.
45. Lau, A. Hing-Ling, “A Five-State Financial Distress Predication Model”, Journal of Accounting Research, Spring 1987, pp127-138.
46. Lee, S. H., and J. L. Urrutia, “Analysis and Prediction of Insolvency in The Property-Liability Insurance Industry: A Comparison of Logit and hazard Models,” The Journal of Risk and Insurance, 63, 1996, pp. 121-130.
47. Lepak, D and Snell. S., “The Human Resource Architecture: Toward a Theory of Haman Capital Allocation and Development”, Academy of Management Review, 24(1), 1999, pp31-48.
48. Loenid V. P. and Vladimir L. P., “Corporate Bankruptcy Prognosis: An Attempt at a Combined Prediction of the Bankruptcy Event and Time Interval of its Occcurrence”.”International Review of Financial Analysis,2002,pp375-406.
49. Lindenberg, E.B. and Ross, S.A., “Tobin’s Q Ratio and Industrial Organization, “Journal of Business, Jan.1981,pp17-20.
50. Lynn, B.E., “Culture and Intellectual Capital Management: A Key Factor in Successful ICM”, International Journal of Technology Management, Vol. 18, No.5/6/7/8,1999,pp590-603.
51. Masoulas, V., “Organizational Requirements Definition for Intellectual Capital Management”, International Journal of Technology Management, Vol.16, No.1/2/3, 1998,pp126-143.
52. Mossman, C. E., Bell, G. G., Swartz, L. M. and Turtle, H. , “An Empirical Comparison of Bankruptcy Models,” Financial Review, 1988, Vol.3, No.1, pp.35-53.
53. Nahapiet, J. and Ghoshal, S., “Social Capital, Intellectual Capital, and the Organizational Advantage”, The Acadmey of Management Revies, Vol.23, No.2, Apr, 1998, pp242-266.
54. O’Dell, C. and C.J Grayson. If only we knew what we know. New York,1998:The Free Press
55. Odom, M.D., “A Neural Network Model for Bankruptcy Prediction”, IJCNN-90,Ⅱ,1990, pp163-168.
56. Ohlson, J.A., “Financial Ratios and the Probabilistic Prediction of Bankruptcy”, Journal of Accounting Research, Vol. 18, Spring 1980, pp.109-131.
57. Opler, T. and Sheridan Titman, 〝FinancialDistress and Corporate Performance 〞Journal of Finance 49 ,1994 pp1015-1040.
58. Osborne, A., “Measuring Intellectual Capital: The Real Value of Companies”. The Ohio CPA Journal (October-December), 1998, pp37-38.
59. Platt, H. and M. Platt, “Development of a Class of Stable Predictive Variables: The Case of Bankruptcy Prediction”, Journal of Business Finance and Accounting, Vol.17, Spring 1990, pp31-51.
60. Rennie, M., “Accounting for Knowledge Assets: Do We Need New Financial Statement?”Int. J. Technology Management(18), 1999, pp648-659.
61. Ross, G. and Ross, J., “Measuring Your Company’s Intellectual Performance”. Long Range Planning. Vol.30, No.3, 1997, pp413-426.
62. Salchenberger, L. M., Cinar, E. M. and Lash, N. A., “Neural networks: a new tool for predicting thrift failures,” Decision Sciences, 1992, Vol. 23, No. 4, pp. 899-916.
63. Smith, Gordin V. and Russell L. Parr, Valuation of Intellectual Property and Intangible Assets, New York, 2000:John Wiley and Sons, Inc.
64. Stewart, Thomas A.,Grab a pencil-it''''s a knowledge quiz, Fortune, 1997 vol. 136, Issue l l, PP. 241-242.
65. Surkan, A. J., and Singleton, J. C., " Neural Networks for Bond Rating Improved by Multiple Hidden Layers ",IEEE INNS International Joint Conference on Neural Networks, vol.2, 1990,pp.157-162.
66. Sveiby, K.E., “The New Organizational Wealth: Managing and Measuring Knowledge-based Assets”, San Francisco, Berrett-Koehler,1997.
67. Tam, K.Y. and M. Kiang, “Manaerial Applications of Neural Netwok: The Case of Bank Failure Predictions”, Management Science, July 1992, pp926-947.
68. Tan, N. W., “A Study on Using Artificial Neural Networks to Develop an Early-Warning Predictor for Credit Union Financial Distress with Comparison to the Probit Model”, 1996, Neural Networks in Finance and Investing, Trippi, R. R. and E. Turban Editors, IRWIN professional Publishing,.
69. Tobin, J., and Brainard, “Pitfalls in the Financial Model Building” America Economics Review, 1968, pp99-122.
70. Ulrich, D., “Intellectual Capital=Competence*Commitment”, Sloan Management Review, Vol.39, No.2, Winter 1998, pp15-26.
71. Van Buren, M.E., “A Yardstick for Knowledge Management”. Training & Development, 1999, pp71-78.
72. Van Buren, M.E., “Making Knowledge Counts: Knowledge Management Systems and the Human Element”. Unpublished Manuscript,1999.
73. Wallman,S.M.H. ,“The Future of Accounting and Disclosure in an Evolving World:The Need for Dramatic Change.”Accounting Horizons,1995, Vol.9 Iss.3,pp.81-91
74. Ward, T.J. and B.P. Foster, “A Not on Selecting a Response Measure for Financial Distress”, Journal of Business Finance and Accounting, Vol.24, July 1997. pp869-879.
75. Wheelock, D. C., and P. W. Wlison, “Why Do Banks Disappear? The Determinants of US Bank Failures and Acquisitions,” Review of Economics and Statistics, 82, 2000, pp. 127-138.
76. Yoon, Y., Swales, G. JU., and Margavio, T.M., “A Comparison of Discriminant Analysis Versus Artifical Neural Networks. “Journal of Operational Research Society, 1993, pp51-60.
77. Zmijewski, M.E., “Methodological Issues Related to the Estimation of Financial Distress Prediction Model”, Studies on Current Economic Issues in Accounting Research, Supplement to Journal of Accounting Reseacch, 1984, pp59-82.
1. 方世調,台灣地區廠商存活的隨機過程模型與實證研究,國立政治大學經濟研究所未出版碩士論文,1991。
2. 尤曉玉,國民小學知識管理現況之調查研究-以台北市嘉義市為例,國立中正大學教育研究所未出版碩士論文。
3. 吳思華,網際網路智慧資本衡量與發展措施研究計畫,資策會資訊市場情報中心,2000。
4. 林文修,演化式類神經網路為基底的企業為基診斷模型:智慧資本之應用,國立中央大學資訊管理研究所博士論文,2000。
5. 李俊毅,應用灰色預測理論與類神經網路於企業財務危機預警模式之研究,義守大學管理科學研究所謂出版碩士論文,1999。
6. 李家豪,依時共變數存活分析模型在企業信用風險之應用,逢甲大學財務金融研究所碩士論文,2002。
7. 花敬霖,台灣股票上市公司預警系統: PHM與Logit模型應用之比較,私立輔仁大學金融研究所碩士論文,1993。
8. 林怡芳,市場價值與帳面價值之差異探討─以IC設計產業為例,國立臺灣大學會計學研究所碩士論文,2001。
9. 胡效寧,非財務變數與企業失敗之研究,東海大學企業管理研究所碩士論文,2002。
10. 洪榮華,不景氣時我國經營不良上市公司財務比率之探討,國立中山大學企業管理究所未出版碩士論文,1984
11. 唐筱菁,整合財務比率與智慧資本指標建構企業危機預警系統-MARS與類神經網之應用,碩士論文,輔仁大學金融研究所,2002
12. 黃文隆,財務危機預警模式建立與驗證,東吳大學管理科學研究所碩士論文,1993。
13. 陳肇榮,運用財務比率預測企業危機之實證研究,國立政治大學企業管理究所未出版博士論文,1983。
14. 陳明賢,財務危機之計量分析研究,國立台灣大學商學研究所未出版碩士論文,1986。
15. 陳隆麒,現代財務管理─理論與應用,華泰書局,1993。
16. 陳蘊如,財務危機預警制度之研究,國立政治大學會計就所碩士論文,1991。
14.陳靜怡,“財務危機公司資本結構決定因素,資本結構與自發性重整行為聯立結構關係模式之研究”,義守大學管理科學研究所未出版碩士論文,2000。
17. 陳謂淳,上市公司失敗預測之實證研究,台北大學企業管理學系博士論文,2001。
18. 陳昱均,類神經網路與模糊系統在企業倒閉風險預測之應用,逢甲大學財務金融學研究所碩士論文,2003。
19. 郭志安,以Cox等比例危險模型建立財務危機預警模式,私立逢甲大學統計與經就所碩士論文,1997。
20. 郭晉源,灰色系統應用於企業財務危機預測之研究,國立台北科技大學商業自動化與管理研究所碩士論文,2002。
21. 郭瓊宜,類神經網路在財務危機欲警模式之應用,碩士論文,淡江大學管理科學研究所碩士論文,1994。
22. 曾祥珉,運用財務指標建立建設公司財務危機預警模式之研究,中央大學土木所,碩士論文,2002
23. 簡志豪,影響智慧資本因子之研究─以我國上市資訊電子股為例,逢甲大學會計與財稅研究所碩士論文,2000。
24. 簡德年,智慧資本構面下企業危機診斷模式之建構─類神經網路、分類迴歸樹與鑑別分析方法之應用,國立台北科技大學商業自動化與管理研究所碩士論文,2000。
25. 董碧玫,智能資本之衡量─以國內資訊電子產業為例,國立中央大學企業館李研究所碩士論文,2001。
26. 傅坤泰,智慧資本於企業績效評估之研究─以IC設計產業為例,輔仁大學金融研究所碩士論文,2001。
27. 廖俊杰,智慧資本投入、產出及企業價值的因果關聯研究─以本國製造業為例,國立臺北大學企業管理研究所博士論文,2004。
28. 蔡基德,資訊電子業市場價值與帳面淨值之差異探討,國立臺灣大學會計學研究所碩士論文,2001。
29. 蔡人煜,類神經網路於預測企業財務危機有效性之研究,彰化師範大學商業教
育學系研究所碩士論文,2002 。
30. 劉沁佩,利用類神經模糊建構財務危機預警模式,私立靜宜大學會計學系碩士班碩士論文,2002。
31. 鄭柏翊,應用遺傳規劃於企業危機診斷模式之建構,碩士論文,國立台北科技大學商業自動化與管理研究所碩論文,2002。
32. 潘玉葉,台灣上市公司財務危機預警分析,淡江大學管理科學研究所未出版博士論文,1990。
33. 劉建和,財務危機診斷的理論探討與實證研究,國立台灣大學商學究所未出版碩士論文,1992。
34. 歐良封,類神經網路在財務危機預警模式之應用─以台灣地區紡織股票上市公司為例,淡江大學管理科學究所未出版碩士論文,1998。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊