|
[1] De Boor, C. (1978), A practical guide to splines, New York: Springer-Verlag. [2] Buse, A. and Lim, L. (1977), Cubic splines as a special case of restricted least squares, Journal of the American Statistical Association, 72 64-68. [3] Chen, L.-A. (1996), Bivariate regression splines, Computational Statistics and Data Analysis, 21 399-418. [4] Chen, L.-A. (1997), Multivariate regression splines, Computational Statistics and Data Analysis, 26 71-82. [5] Cleveland, W. S. and Devlin, S. J. (1988), Locally weighted regression: an approach to regression analysis by local fitting, Journal of the American Statistical Association, 83 596-610. [6] Cleveland, W. S., Mallows, C. L. and McRae, J. E. (1993), ATS Methods: Nonparametric regression for non-Gaussian data, Journal of the American Statistical Association, 88 821-835. [7] Curry, H. B. and Schoenberg, I. J. (1947), On spline distributions and their limits: the Polya distribution functions, Abstract 380t, Bulletion American Mathematical Society, 53, 1114, p109. [8] Eubank, R. L. (1984), Approximate Regression Models and Splines, Communications in Statistics - Theory and Methods, 13, 433-484. [9] Eubank, R. L. (1988), Spline smoothing and nonparametric regression, New York: Marcel Dekker, Inc. [10] Poirier, D. J. (1973), Piecewise regression using cubic splines, Journal of the American Statistical Association, 68 515-524. [11] Schumaker, L. L. (1984), On Spaces of Piecewise Polynomials in Two Variables. In Singh, S. P. etc. Approximation Theory and Spline Functions, Reidel, Dodrecht, 151-197. [12] Smith, P. L. (1979), Splines as a useful and convenient statistical tool, The American Statistician, 33 57-62. [13] Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: SIAM. [14] Gunther Nurnberger, Approximation by Spline Functions, Springer-Verlag.
|