|
ReferenceAnderson, T. W. (1954), On estimation of parameters in latent structureanalysis. Psychometrika, 19, 1-10.Agresti, A. (1990), Categorical Data Analysis. New York: Wiley.DeSarbo, W. S., Wedel, M., and Bult, J. R. (1993), A latent class posi-tionregression model for heterogeneous count data. Journal of AppliedEconometrics, 8, 397-411.DeSarbo, W. S. and Wdel, M. (1995), A mixture likelihood approach forgeneralized linear models. Journal of Classification, 12, 21-55.Everitt, B. S. and Hand, D. J. (1981), Finite Mixture Distributions. NewYork: Chapman and Hall.Everitt,B.S. (1984), An Introduction to Latent Variable Models. NewYork: Chapman and Hall.Jobson, J. D. (1992), Applied Multivariate Data Analysis, Vol. 2. Cat-egoricaland Multivariate Methods. New York: Springer-Verlag.Lazarsfeld, P. F. (1950), The logical and mathematical foundation oflatent structure analysis. Psychometrika, 16, 151-166.McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models. NewYork : Chapman and Hall.McLachlan, G. J. and K. E. Basford (1988), Mixture Models: Inferenceand Aapplications to Clustering. New York: Marcel Dekker.Nelder, J. A. and Wedderburn, R. W. M. (1972), Generalized linearmodels. Journal of the Royal Statistical Society, Series A, 135, 370-384.Yang, M. S. (1993), On a class of fuzzy classification maximum likelihoodprocedures. Fuzzy Sets and Systems, 57, 365-375.Yang, M. S. and Yu, N. Y. (1999), On estimation of parameters in latentclass models using clustering algorithms. (submitted).Zadeh, L. A. (1965), Fuzzy sets. Inform. and control. 8, 338-353.33
|