跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林可淳
研究生(外文):Ko-Chun Lin
論文名稱:利用電導-電壓及矽的電激發光量測研究N型鍺量子點金氧半結構之介面缺陷特性
論文名稱(外文):Interface traps of the N-type MOS structure with Ge nanocrystals characterized by G-V measurement and Si electron-luminescence
指導教授:管傑雄管傑雄引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:47
中文關鍵詞:矽鍺元件金氧半元件鍺奈米粒子缺陷電激發光
外文關鍵詞:SiGe deviceMOS deviceGe nanocrystaltrapELPMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在金屬-氧化層-半導體中埋入鍺量子點作為浮動閘極,形成非揮發性奈米晶體記憶體,並藉由穿透式電子顯微鏡(Transmission electron microscopy, TEM)驗證量子點結構的形成。關於元件儲存電荷的特性,利用電容-電壓量測驗證,PMA之後,即使頻率從1000kHz降到5kHz,載子交換速度變慢,記憶窗口仍然存在,表示鍺量子點有保存載子的能力。而電導-電壓量測中比較PMA時間對電導值的影響,可以觀察到PMA 1分鐘的電導值較PMA 9分鐘的電導值小,且只有在量測頻率100kHz以上才有明顯差別,證明了PMA可以修補淺層的缺陷,並且利用電導-電壓量測的結果趨勢,模擬出缺陷的分佈模型。電導-電壓隨頻率越大峰值越大且往正偏壓位移。表示能帶邊緣的淺層缺陷密度較高,能帶中間分佈的深層缺陷密度較低。
進行電激發光頻譜之量測,欲了解缺陷對於發光的影響,但元件因直流觸發而導致過熱產生黑體輻射,因此改由脈衝模式觸發。找出最適合的脈衝模式為頻率1 Hz的方波脈衝, 頻率1 Hz的輸入波形較適合電洞到達矽基體的速度,若使用較快的頻率,電洞無法在一次電源開啟的時間內到達矽基體,而停留在氧化層中,需要兩到三次的電源開啟,才有辦法到達矽基體,因此發光較弱。改用脈衝觸發後,元件不會再因過熱產生黑體輻射,矽的光也增強約40倍。
而發光對時間的關係中也發現,PMA 13分鐘的元件發光效率最好,此結果與電導-電壓量測實驗所得結論符合,PMA可修補淺層缺陷,因此電洞更容易到達矽基體,PMA13分鐘的元件發光效率較PMA1分鐘的元件高出約兩倍。
In this work, Metal-Oxide-Semiconductor structure with germanium nanocrystals formed by E-gun evaporator for charge storage and luminescence is fabricated. Fabricated devices are characterized by Transmission Electron Microscope. In the characterization of memory performance of devices with different PMA time, high frequency capacitance-voltage (C-V) measurement is used to measure the memory window for comparing the charge storage capacity. Frequency varied from 1000kHz to 5kHz which means exchanging speeds are slower, but the memory windows still exist. The carriers charged in Ge dots are independent of frequency. On the other hand, in conductance-voltage (G-V) measurement, the conductance of sample with PMA 1 minute is larger than sample with PMA 9 minutes, when frequency is more than 100 kHz. The result helps us to establish the model of the trap distribution, and characterize that PMA can neutralize the shallow trap. The peak values are larger with higher frequency and shift to positive bias, which means that the slow trap density is larger near band edge and smaller in mid band.
The luminescence mechanism is figured out by electron -luminescence (E-L) measurement. Holes are hopping though the traps in SiO2, and into Si substrate to recombination with the majority carriers-electrons. Triggered by DC mode, blackbody radiation caused by heat would effect Si E-L measurement. For improving luminescence efficiency, device must be triggered by the optimum frequency-1Hz matched the velocity of hole tunneling though oxide. Holes will be trapped in oxide instead of passing through in higher frequency, hence the recombination electron-hole pairs decreased. Luminescence of Si increased about 40 times, because of triggered by pulse mode.
Sample with PMA 13 minutes has better luminescence efficiency than sample with PMA 1 minute more than twice in time-domain luminescence measurement. This result agree with G-V measurement, which is PMA can neutralize the fast traps and make holes pass through oxide easier.
口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
第一章 引言 1
1.1 研究動機 1
1.2 論文概要 3
第二章 簡介 4
2.1 鍺奈米粒子的形成 5
2.2 非揮發性奈米晶體記憶體 8
2.3 非揮發性奈米晶體記憶體之發光機制 9
2.3.1 通道熱電子寫入 10
2.3.2 富勒-羅得漢穿透抹除 10
2.4 缺陷之特性與量測方法 11
第三章 元件結構之製作與量測流程 14
3.1 鍺量子點金屬-氧化層-半導體結構製作流程 14
3.2 量測儀器之架設 20
3.2.1 C-V and G-V measurement 20
3.2.2 E-L (Electroluminescence) spectrum 20
3.2.3 L-I (Luminescence intensity) 21
第四章 實驗結果與討論 24
4.1 不同PMA時間之C-V與G-V曲線 24
4.2 E-L spectrum 與黑體輻射之比較 31
4.3 發光機制與觸發模式 34
4.4 輸入波形與不同PMA時間元件所量測之L-I 38
第五章 結論 43
[1] Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabrication by oxidation of Si1-XGeX,” IEEE Trans. Electron Devices, vol. 48, pp. 696-699, Apr.2001
[2] D. Frohman-Bentchkowsky, “Memory behavior in a floating – gate avalanche injection MOS (FAMOS) structure,” Appl. Phys. Lett., vol.18, p.332,1971
[3] J. D. Blauwe,“Nanocrystal Nonvolatile Memory Devices,” IEEE Trans. Nanotechnol, vol.1 (1), p.72, 2002.
[4] E. W. H. Kan, W. K. Choi,a) and W. K. Chim, “Origin of charge trapping in germanium nanocrystal embedded SiO2 system: Role of interfacial traps,” Appl. Phys. Lett., vol.95, p.3184,2004
[5] Shaoyun Huang, Souri Banerjee, Raymond T. Tung, and Shunri Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance–voltage and conductance–voltage measurements,” Appl. Phys. Lett., vol.93, p.576, 2003.
[6] Aaron Thean and Jean-Pierre Leburton, “Flash memory: towards single- electronics,” IEEE Potentials, p.35, 2002.
[7] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and Long Retention-Time Nano-Crystal Memory,” IEEE Trans. Electron Devices, vol.43 (9), p.1553, 1996.
[8] S.M.Sze.”Semiconductor device physics and technology”,New York:Wiley,1985.
[9] S.M.Sze.”Physics of semiconductor device”,New York:Wiley,1981.
[10] Kanaan Kano.“Semiconductor device”, Prentice-Hall,1998.
[11] Neamen,D.A.”Semiconductor physics and device basic principles”,Mc Graw Hill,2002.
[12] Pankove,J.I.”Optical proesses in semiconductor”,Prentice-Hall,1971.
[13] Kittle,C.”Introduction to solid state physics”,New York:Wiley,2005.
[14] E.H.Nicollain and J.R.Brews,”MOS physics and technology”New York,1982.
[15] J. J. Chang, “Nonvolatile semiconductor memory device,”, IEEE Trans. Electron Devices, vol. 64, no.7, 1976.
[16] G. Franzo, A. Irrera, E.C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica, F. Priolo, “Electroluminescence of Silicon nanocrystals in MOS structures,” Appl. Phys. A, vol. 74, pp. 1-5, 2002
[17] 李嗣涔,管傑雄,孫台平。”半導體元件物理”,三民書局,1995
[18] J.Lambe and S.I.McCarthy,”Light Emission from Inelastic electron tunneling”Phys.Rew.Lett,923.
[19] C. L. Heng, W. W. Tjiu, and T. G. Finstad, “Charge-storage effects in a metal-insulator-semiconductor structure containing germanium nanocrystals formed by rapid thermal annealing of an electron-beam evaporated germanium layer;” Appl. Phys. A : Material Science & Processing, vol. 78, pp. 1181-1186,2004
[20] J. H. Chen, Y. Q. Wang, W. J. Yoo, Y.-C. Yeo, Ganesh, D. SH Chan, A. Y. Du, and D.-L. Kwong, “Nonvolatile Flash Memory Device Using Ge Nanocrystals Embedded in HfAlO high-k Tunneling and control oxide: Device Fabrication and Electrical performance,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1840-1848, 2004
[21] Y. Shi, K. Saito, H. Ishikuro and T. Hiramoto, “Effects of Interface Traps on Charge Retention Characteristics in Silicon-Quantum-Dot-Based Metal -Oxide-Semiconductor Diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 425-428,1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top