|
*Abraham, C., Cornillon, P.-A., Matzner-L??ber, E., and Molinari, N. (2003). Unsupervised curve clustering using B-splines. Scandinavian journal of statistics, 30:581–595. *Alonso, A. M., Berrendero, J. R., Herna´ndez, A., and Justel, A. (2006). Time series clustering based on forecast densities. Computational Statistics and Data Analysis, 51:762–776. *Angiulli, F. and Fassetti, F. (2010). Distance-based outlier queries in data streams: the novel task and algorithms. Data Mining and Knowledge Discovery, 20(2):290–324. *Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pe´rez, J. M., and Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1):243–256. *Arribas-Gil, A. and Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram. Biostatistics, 15(4):603–619. *Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics. *Batista, G. E., Wang, X., and Keogh, E. J. (2011). A complexity-invariant distance measure for time series. In Proceedings of the 11th SIAM International Conference on Data Mining, pages 699–710. *Be´guin, C. and Hulliger, B. (2004). Multivariate outlier detection in incomplete survey data: the epidemic algorithm and transformed rank correlations. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(2):275–294. *Berkhin, P. (2006). A survey of clustering data mining techniques. In Kogan, J., Nicholas, C., and Teboulle, M., editors, Grouping multidimensional data, pages 25–71. Springer. *Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in time series. KDD-94: AAAI Workshop on Knowledge Discovery in Databases, 10:359–370. *Bock, H. H. (1996). Probabilistic models in cluster analysis. Computational Statistics & Data Analysis, 23(1):5–28. *Bouveyron, C. and Brunet-Saumard, C. (2014). Model-based clustering of high-dimensional data: A review. Computational Statistics and Data Analysis, 71:52–78. *Bouveyron, C. and Jacques, J. (2011). Model-based clustering of time series in group-specific functional subspaces. Advances in Data Analysis and Classification, 5:281–300. *Bradley, J. R., Cressie, N., and Shi, T. (2016). A comparison of spatial preictors when datasets could be very large. Statistics Surveys, 10:100–131. *Brandmaier, A. M. (2012). Permutation distribution clustering and structural equation model trees. PhD thesis, Saarland University, Saarbruecken, Germany. *Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof: identifying density-based local outliers. In ACM sigmod record, volume 29, pages 93–104. ACM. *Caiado, J., Crato, N., and Pen˜a, D. (2006). A periodogram-based metric for time series classification. Computational Statistics and Data Analysis, 50:2668–2684. *Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3):15. *Chiou, J.-M. and Li, P.-L. (2007). Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69:679–699. *Chouakria, A. D. and Nagabhushan, P. N. (2007). Adaptive dissimilarity index for measuring time series proximity. Advances in Data Analysis and Classification, 1:5–21. *Cooke, E. J., Savage, R. S., Kirk, P. D., Darkins, R., and Wild, D. L. (2011). Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements. BMC bioinformatics, 12(1):399. *Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):209–226. *Dang, X. and Serfling, R. (2010). Nonparametric depth-based multivariate outlier identifiers, and masking robustness properties. Journal of Statistical Planning and Inference, 140(1):198–213. *de Lucas, D. C. (2010). Classification techniques for time series and functional data. PhD thesis, Universidad Carlos III de Madrid. *Delaigle, A. and Hall, P. (2010). Defining probability density for a distribution of random functions. The Annals of Statistics, 38:1171–1193. *Delicado, P., Giraldo, R., Comas, C., and Mateu, J. (2010). Statistics for spatial functional data: some recent contributions. Environmetrics, 21(3-4):224–239. *Dudek, M. W. A. (2016). clusterSim: Searching for Optimal Clustering Procedure for a Data Set. R package version 0.45-1. *Edwards, A. W. and Cavalli-Sforza, L. L. (1965). A method for cluster analysis. Biometrics, pages 362–375. *Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231. *Fan, J. and Zhang, W. (2004). Generalised likelihood ratio tests for spectral density. Biometrika, 91:195–209. *Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice. Springer Science & Business Media. *Ferreira, L. and Hitchcock, D. B. (2009). A comparison of hierarchical methods for clustering functional data. Communications in Statistics Simulation and Computation, 38:1925–1949. *Forzani, L., Fraiman, R., and Llop, P. (2011). Density estimation for spatial-temporal data. Recent Advances in Functional Data Analysis and Related Topics, pages 117–121. *Fowlkes, E. B. and Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American statistical association, 78(383):553–569. *Gaffney, S. J. and Smyth, P. (2004). Joint probabilistic curve clustering and alignment. In Saul, L., Weiss, Y., and Bottou, L., editors, Advances in neural information processing systems 17, pages 473–480. Cambridge, MA: MIT Press. *Garcia-Escudero, L.-A., Gordaliza, A., Matran, C., Mayo-Iscar, A., and Hennig, C. (2015). Robustness and outliers. In Hennig, C., Meila, M., Murtagh, F., and Rocci, R., editors, Handbook of Cluster Analysis, pages 653–678. Taylor & Francis. *Gasser, T. and Kneip, A. (1995). Searching for structure in curve samples. Journal of the American Statistical Association, 90(432):1179–1188. *Gervini, D. (2009). Detecting and handling outlying trajectories in irregularly sampled functional datasets. The Annals of Applied Statistics, 3(4):1758– 1775. *Gervini, D. (2012). Outlier detection and trimmed estimation for general functional data. Statistica Sinica, 22:1639–1660. *Goldstein, M. and Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS one, 11(4):e0152173. *Green, P. J. and Silverman, B. W. (1993). Nonparametric regression and generalized linear models: a roughness penalty approach. CRC Press. *Hadjipantelis, P. Z., Aston, J. A., Muller, H.-G., and Evans, J. P. (2015). Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed-effects modeling of mandarin chinese. Journal of the American Statistical Association, 110(510):545–559. *Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., and Bing, G. (2016). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications. *Hardin, J., Mitani, A., Hicks, L., and VanKoten, B. (2007). A robust measure of correlation between two genes on a microarray. BMC bioinformatics, 8(1):220. *Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108. *He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9):1263–1284. *Henderson, B. (2006). Exploring between site differences in water quality trends: a functional data analysis approach. Environmetrics, 17(1):65–80. *Hennig, C. (2014). How many bee species? a case study in determining the number of clusters. In Data Analysis, Machine Learning and Knowledge Discovery, pages 41–49. Springer. *Hennig, C. and Lin, C.-J. (2015). Flexible parametric bootstrap for testing homogeneity against clustering and assessing the number of clusters. Statistics and Computing, 25(4):821–833. *Hennig, C., Meila, M., Murtagh, F., and Rocci, R., editors (2015). Handbook of Cluster Analysis. Taylor & Francis, Boca Raton FL. *Hitchcock, D. B., Booth, J. G., and Casella, G. (2007). The effect of pre-smoothing functional data on cluster analysis. Journal of Statistical Computation and Simulation, 77:1043–1055. *Hodge, V. J. and Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2):85–126. *Hormann, S., Kidzin´ski, Ł., and Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(2):319–348. *Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1):193–218. *Hubert, M., Rousseeuw, P. J., and Segaert, P. (2015). Multivariate functional outlier detection. Statistical Methods & Applications, 24(2):177–202. *Hutchinson, M. F. and De Hoog, F. (1985). Smoothing noisy data with spline functions. Numerische Mathematik, 47:99–106. *Hyndman, R. J. and Shang, H. L. (2010). Rainbow plots, bagplots, and box-plots for functional data. Journal of Computational and Graphical Statistics, 19(1):29–45. *Jacques, J. and Preda, C. (2013). Funclust: A curves clustering method using functional random variables density approximation. Neurocomputing, 112:164–171. *Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8):651–666. *Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc. *James, G. M., Hastie, T. J., and Sugar, C. A. (2000). Principal component models for sparse functional data. Biometrika, 87:587–602. *James, G. M. and Sugar, C. A. (2003). Clustering for sparsely sampled func- tional data. Journal of the American Statistical Association, 98:397–408. *Jones, B. L. and Nagin, D. S. (2007). Advances in group-based trajectory modeling and an sas procedure for estimating them. Sociological Methods and Research, 35:542–571. *Kaufman, L. and Rousseeuw, P. (1987). Clustering by means of medoids. In Dodge, Y., editor, Statistical data analysis based on the L1-norm and related methods, pages 405–416. North-Holland. *Kaufman, L. and Rousseeuw, P. J. (1990). Partitioning around medoids (pro- gram pam). In Finding groups in data: an introduction to cluster analysis, pages 68–125. Wiley Online Library. *Keller, F., Muller, E., and Bohm, K. (2012). Hics: High contrast subspaces for density-based outlier ranking. In Data Engineering (ICDE), 2012 IEEE 28th International Conference on, pages 1037–1048. IEEE. *Knox, E. M. and Ng, R. T. (1998). Algorithms for mining distancebased outliers in large datasets. In Proceedings of the International Conference on Very Large Data Bases, pages 392–403. Citeseer. *Kriegel, H.-P., Kroger, P., Schubert, E., and Zimek, A. (2009). Loop: local outlier probabilities. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 1649–1652. ACM. *Krivobokova, T. and Kauermann, G. (2007). A note on penalized spline smoothing with correlated errors. Journal of the American Statistical Association, 102:1328–1337. *Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F., Gneiting, T., et al. (2017). Forecaster’s dilemma: extreme events and forecast evaluation. Statistical Science, 32(1):106–127. *Lin, C.-J., Hennig, C., and Huang, C.-L. (2015). Clustering and a dissimilarity measure for methadone dosage time series. In Proceedings of ECDA-2014, Bremen, Germany, pages 31–41. Springer, Berlin. *Lin, J.-A., Zhu, H., Mihye, A., Sun, W., and Ibrahim, J. G. (2014). Functional-mixed effects models for candidate genetic mapping in imaging genetic studies. Genetic epidemiology, 38(8):680–691. *Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank tests. Journal of the American Statistical Association, 88(421):252–260. *Liu, X. and Yang, M. C. (2009). Simultaneous curve registration and clustering for functional data. Computational Statistics and Data Analysis, 53:1361–1376. *Maharaj, E. A. (1996). A significance test for classifying arma models. Journal of Statistical Computation and Simulation, 54:305–331. *McLachlan, G. J. and Basford, K. E. (1988). Mixture models: Inference and applications to clustering. Marcel Dekker. *McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of longitudinal data. Canadian Journal of Statistics, 38:153–168. *Meila, M. (2003). Comparing clusterings by the variation of information. In Colt, volume 3, pages 173–187. Springer. *Melnykov, V., Maitra, R., et al. (2010). Finite mixture models and model-based clustering. Statistics Surveys, 4:80–116. *Milligan, G. W. and Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2):159–179. *Montero, P. and Vilar, J. A. (2014). TSclust: An R package for time series clustering. Journal of Statistical Software, 62:1–43. *Muller, H.-g. (2005). Functional modelling and classification of longitudinal data. Scandinavian Journal of Statistics, 32(2):223–240. *Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2:86–97. *Nowak, E. (1985). Wskaznik podobienstwa wynikow podzialow. Przeglad Statystyczny, 1:41–48. *Oh, H.-K., Yoon, S.-H., and Kim, S.-W. (2012). Hierarchical clustering and outlier detection for effective image data organization. In Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, page 18. ACM. *Olea, R. A. (1974). Optimal contour mapping using universal kriging. Journal of Geophysical Research, 79(5):695–702. *Ordonez, C., Mohanam, N., and Garcia-Alvarado, C. (2014). Pca for large data sets with parallel data summarization. Distributed and Parallel Databases, 32(3):377–403. *Pamula, R., Deka, J. K., and Nandi, S. (2011). An outlier detection method based on clustering. In Emerging Applications of Information Technology (EAIT), 2011 Second International Conference on, pages 253–256. IEEE. *Park, S. Y. and Staicu, A.-M. (2015). Longitudinal functional data analysis. Stat, 4(1):212–226. *Pourahmadi, M., Daniels, M. J., and Park, T. (2007). Simultaneous modelling of the cholesky decomposition of several covariance matrices. Journal of Multivariate Analysis, 98(3):568–587. *R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. *Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. ACM SIGMOD Record, 29:427–438. *Ramsay, J. and Silverman, B. (2005a). Functional Data Analysis. Springer. *Ramsay, J. and Silverman, B. (2005b). Smoothing functional data with a roughness penalty. In Functional Data Analysis, pages 81–109. Springer. *Ramsay, J. O. and Li, X. (1998). Curve registration. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2):351–363. *Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846–850. *Reiss, P. T. and Ogden, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics, 66(1):61–69. *Reza, M. S. and Ruhi, S. (2015). Multivariate outlier detection using independent component analysis. Science Journal of Applied Mathematics and Statistics, Science Publishing Group, USA, 3(4):171–176. *Rice, J. A. (2004). Functional and longitudinal data analysis: perspectives on smoothing. Statistica Sinica, pages 631–647. *Rousseeuw, P. J., Ruts, I., and Tukey, J. W. (1999). The bagplot: a bivariate boxplot. The American Statistician, 53(4):382–387. *Ruiz-Medina, M., Espejo, R., Ugarte, M., and Militino, A. (2014). Functional time series analysis of spatio-temporal epidemiological data. Stochastic environmental research and risk assessment, 28(4):943. *Said, A. B., Hadjidj, R., and Foufou, S. (2017). Cluster validity index based on jeffrey divergence. Pattern Analysis and Applications, 20(1):21–31. *Sawant, P., Billor, N., and Shin, H. (2012). Functional outlier detection with robust functional principal component analysis. Computational Statistics, 27(1):83–102. *Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., and Chang, L. (2003). A novel anomaly detection scheme based on principal component classifier. Technical report, MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRICAL AND COMPUTER ENGINEERING. *Slaets, L., Claeskens, G., and Hubert, M. (2012). Phase and amplitude-based clustering for functional data. Computational Statistics and Data Analysis, 56(7):2360–2374. *S??rensen, H., Goldsmith, J., and Sangalli, L. M. (2013). An introduction with medical applications to functional data analysis. Statistics in medicine, 32(30):5222–5240. *Speed, T. (1991). Comment on “That blup is a good thing: The estimation of random effects”. Statistical Science, 6:42–44. *Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document clustering techniques. In KDD workshop on text mining, volume 400, pages 525–526. Boston. *Strehl, A., Ghosh, J., and Mooney, R. (2000). Impact of similarity measures on web-page clustering. In Workshop on artificial intelligence for web search (AAAI 2000), volume 58, page 64. *Tax, D. M. and Duin, R. P. (1999). Support vector domain description. Pattern recognition letters, 20(11):1191–1199. *Tibshirani, R. and Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3):511– 528. *Tryon, R. C. (1939). Cluster analysis: Correlation profile and orthometric (factor) analysis for the isolation of unities in mind and personality. Edwards brother, Incorporated, lithoprinters and publishers. *Tucker, J. D., Wu, W., and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis, 61:50–66. *Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the international congress of mathematicians, volume 2, pages 523–531. *Tzeng, S., Hennig, C., Li, Y.-F., and Lin, C.-J. (2017). Dissimilarity for functional data clustering based on smoothing parameter commutation. Statistical Methods in Medical Research, to appear. *Tzeng, S. and Huang, H.-C. (2017). Resolution adaptive fixed-rank kriging. Technometrics, to appear. *Vilar, J. A., Alonso, A. M., and Vilar, J. M. (2010). Non-linear time series clustering based on non-parametric forecast densities. Computational Statistics and Data Analysis, 54:2850–2865. *Vines, B. W., Nuzzo, R. L., and Levitin, D. J. (2005). Analyzing temporal dynamics in music. Music Perception: An Interdisciplinary Journal, 23(2):137–152. *Wahba, G. (1990). Spline models for observational data. SIAM. *Wahba, G. and Wendelberger, J. (1980). Some new mathematical methods for variational objective analysis using splines and cross validation. Monthly weather review, 108(8):1122–1143. *Wallace, D. L. (1983). Comment. Journal of the American Statistical Association, 78(383):569–576. *Wang, K. and Gasser, T. (1999). Synchronizing sample curves nonparametrically. Annals of Statistics, pages 439–460. *Wang, Y. (1998). Smoothing spline models with correlated random errors. Journal of the American Statistical Association, 93:341–348. *Warren Liao, T. (2005). Clustering of time series data–a survey. Pattern recognition, 38:1857–1874. *Wolfe, J. H. (1963). Object cluster analysis of social areas. PhD thesis, University of California. *Yao, F., Muller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470):577–590. *Yassouridis, C. (2017). funcy: Functional Clustering Algorithms. R package version 0.8.6. *Zhang, X., Wang, J.-L., et al. (2016). From sparse to dense functional data and beyond. The Annals of Statistics, 44(5):2281–2321. *Zhang, Z. and Muller, H.-G. (2011).Functional density synchronization. *Computational Statistics & Data Analysis, 55(7):2234–2249. *Zhou, L. and Pan, H. (2014). Principal component analysis of two-dimensional functional data. Journal of Computational and Graphical Statistics, 23(3):779–801. *Zhou, S. and Shen, X. (2001). Spatially adaptive regression splines and accurate knot selection schemes. Journal of the American Statistical Association, 96(453):247–259. *Zimek, A., Schubert, E., and Kriegel, H.-P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5):363–387.
|