跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾聖澧
研究生(外文):Sheng-Li Tzeng
論文名稱:應用樣條函數與隨機效應模型於函數型資料分群
論文名稱(外文):Functional Data Clustering Based on Spline Functions and Random-Effects Models
指導教授:李郁芬李郁芬引用關係
指導教授(外文):Yu-Fen Li
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:公共衛生學系博士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:72
中文關鍵詞:函數型資料群集分析樣條函數隨機效應模型
外文關鍵詞:Functional DataClustering AnalysisSpline FunctionsRandom-Effects Models
相關次數:
  • 被引用被引用:0
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
許多研究在多個時間點上對實驗參與者重複測量相同的變項,如此收集的數據稱為函數型資料。根據每人的多筆測量結果進行集群分析,在很多領域有重要的應用。本論文針對(一維)函數型資料的相異程度,提出新穎且容易執行的方法。此方法同時適用於規律時間點或不規律時間點上的紀錄。首先以平滑樣條插捕每位實驗參與者的函數曲線,決定每人之平滑參數。任兩參與者間的相異程度是透過共用兩人之平滑參數所估計的曲線計算,參與者不同則使用的一對平滑參數也隨之變動。此方法的直觀意義是平滑參數相當於平滑樣條中訊號-噪音比值的倒數,而兩條相似曲線上的觀測數據若以同一平滑參數估計背後的函數,可預期將得到相似的估計曲線。作法看似複雜,實際上並未增加計算量,因給定平滑參數時平滑樣條有特殊的快速演算法。此法透過平滑參數互換,將曲線估計的不確定性納入考量。且由於成對的相異程度較不受離群值的影響,它也可以用於找出離群值。文中將透過模擬與現有其他方法比較,及應用於美沙酮劑量變化的分群,驗證本法的有效性。本文亦敘述將此方法拓展至二維或三維空間之函數資料的困難,並討論可能的解決方案。
Many studies measure the same type of information longitudinally on the same subject at multiple time points, and clustering of such functional data has many important applications. We propose a novel and easy method to implement dissimilarity measure for functional data clustering based on smoothing splines and smoothing parameter commutation. This method handles data observed at regular or irregular time points in the same way. We measure the dissimilarity between subjects based on varying curve estimates with pairwise commutation of smoothing parameters. The intuition is that smoothing parameters of smoothing splines reflect the inverse of the signal-to-noise ratios and that when applying an identical smoothing parameter the smoothed curves for two similar subjects are expected to be close. Our method takes into account the estimation uncertainty using smoothing parameter commutation and is not strongly affected by outliers. It can also be used for outlier detection. The effectiveness of our proposal is shown by simulations comparing it to other dissimilarity measures and by a real application to methadone dosage maintenance levels. We also discuss the challenge and the potential solution to extend this method to functional data on two- or three- dimensional space.
Acknowledgements. . . . . i
中文摘要. . . . . ii
Abstract. . . . . iii
1 Introduction. . . . . 1
1.1 Motivation. . . . . 1
1.2 Outline. . . . . 3
2 Literature Review. . . . . 4
2.1 Cluster analysis for vector-valued data. . . . . 4
2.1.1 Hierarchical clustering. . . . . 4
2.1.2 Partition-based methods. . . . . 6
2.1.3 Distribution-based methods. . . . . 9
2.1.4 Density-based methods. . . . . 11
2.2 Clustering result comparison. . . . . 12
2.3 Outlier detection. . . . . 16
2.4 Types of functional data. . . . . 19
2.5 Smoothing techniques. . . . . 21
3 Method. . . . . 24
3.1 Challenges and strategies in functional data clustering. . . . . 24
3.2 Smoothing splines. . . . . 29
3.3 Smoothing Parameter Commutation dissimilarity. . . . . 31
4 Results. . . . . 33
4.1 Simulation study. . . . . 33
4.2 Real data application with outlier detection . . . . . 42
5 Discussion. . . . . 51
5.1 Future directions for 1D problems . . . . . . . . . . 51
5.2 2D or 3D extensions via spatial random-effects models. . . . . 52
6 Conclusion. . . . . 57
Reference. . . . . 58
*Abraham, C., Cornillon, P.-A., Matzner-L??ber, E., and Molinari, N. (2003). Unsupervised curve clustering using B-splines. Scandinavian journal of statistics, 30:581–595.
*Alonso, A. M., Berrendero, J. R., Herna´ndez, A., and Justel, A. (2006). Time series clustering based on forecast densities. Computational Statistics and Data Analysis, 51:762–776.
*Angiulli, F. and Fassetti, F. (2010). Distance-based outlier queries in data streams: the novel task and algorithms. Data Mining and Knowledge Discovery, 20(2):290–324.
*Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pe´rez, J. M., and Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1):243–256.
*Arribas-Gil, A. and Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram. Biostatistics, 15(4):603–619.
*Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics.
*Batista, G. E., Wang, X., and Keogh, E. J. (2011). A complexity-invariant distance measure for time series. In Proceedings of the 11th SIAM International Conference on Data Mining, pages 699–710.
*Be´guin, C. and Hulliger, B. (2004). Multivariate outlier detection in incomplete survey data: the epidemic algorithm and transformed rank correlations. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(2):275–294.
*Berkhin, P. (2006). A survey of clustering data mining techniques. In Kogan, J., Nicholas, C., and Teboulle, M., editors, Grouping multidimensional data, pages 25–71. Springer.
*Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in time series. KDD-94: AAAI Workshop on Knowledge Discovery in Databases, 10:359–370.
*Bock, H. H. (1996). Probabilistic models in cluster analysis. Computational Statistics & Data Analysis, 23(1):5–28.
*Bouveyron, C. and Brunet-Saumard, C. (2014). Model-based clustering of high-dimensional data: A review. Computational Statistics and Data Analysis, 71:52–78.
*Bouveyron, C. and Jacques, J. (2011). Model-based clustering of time series in group-specific functional subspaces. Advances in Data Analysis and Classification, 5:281–300.
*Bradley, J. R., Cressie, N., and Shi, T. (2016). A comparison of spatial preictors when datasets could be very large. Statistics Surveys, 10:100–131.
*Brandmaier, A. M. (2012). Permutation distribution clustering and structural equation model trees. PhD thesis, Saarland University, Saarbruecken, Germany.
*Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof: identifying density-based local outliers. In ACM sigmod record, volume 29, pages 93–104. ACM.
*Caiado, J., Crato, N., and Pen˜a, D. (2006). A periodogram-based metric for time series classification. Computational Statistics and Data Analysis, 50:2668–2684.
*Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3):15.
*Chiou, J.-M. and Li, P.-L. (2007). Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69:679–699.
*Chouakria, A. D. and Nagabhushan, P. N. (2007). Adaptive dissimilarity index for measuring time series proximity. Advances in Data Analysis and Classification, 1:5–21.
*Cooke, E. J., Savage, R. S., Kirk, P. D., Darkins, R., and Wild, D. L. (2011). Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements. BMC bioinformatics, 12(1):399.
*Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):209–226.
*Dang, X. and Serfling, R. (2010). Nonparametric depth-based multivariate outlier identifiers, and masking robustness properties. Journal of Statistical Planning and Inference, 140(1):198–213.
*de Lucas, D. C. (2010). Classification techniques for time series and functional data. PhD thesis, Universidad Carlos III de Madrid.
*Delaigle, A. and Hall, P. (2010). Defining probability density for a distribution of random functions. The Annals of Statistics, 38:1171–1193.
*Delicado, P., Giraldo, R., Comas, C., and Mateu, J. (2010). Statistics for spatial functional data: some recent contributions. Environmetrics, 21(3-4):224–239.
*Dudek, M. W. A. (2016). clusterSim: Searching for Optimal Clustering Procedure for a Data Set. R package version 0.45-1.
*Edwards, A. W. and Cavalli-Sforza, L. L. (1965). A method for cluster analysis. Biometrics, pages 362–375.
*Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231.
*Fan, J. and Zhang, W. (2004). Generalised likelihood ratio tests for spectral density. Biometrika, 91:195–209.
*Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice. Springer Science & Business Media.
*Ferreira, L. and Hitchcock, D. B. (2009). A comparison of hierarchical methods for clustering functional data. Communications in Statistics Simulation and Computation, 38:1925–1949.
*Forzani, L., Fraiman, R., and Llop, P. (2011). Density estimation for spatial-temporal data. Recent Advances in Functional Data Analysis and Related Topics, pages 117–121.
*Fowlkes, E. B. and Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American statistical association, 78(383):553–569.
*Gaffney, S. J. and Smyth, P. (2004). Joint probabilistic curve clustering and alignment. In Saul, L., Weiss, Y., and Bottou, L., editors, Advances in neural information processing systems 17, pages 473–480. Cambridge, MA: MIT Press.
*Garcia-Escudero, L.-A., Gordaliza, A., Matran, C., Mayo-Iscar, A., and Hennig, C. (2015). Robustness and outliers. In Hennig, C., Meila, M., Murtagh, F., and Rocci, R., editors, Handbook of Cluster Analysis, pages 653–678. Taylor & Francis.
*Gasser, T. and Kneip, A. (1995). Searching for structure in curve samples. Journal of the American Statistical Association, 90(432):1179–1188.
*Gervini, D. (2009). Detecting and handling outlying trajectories in irregularly sampled functional datasets. The Annals of Applied Statistics, 3(4):1758– 1775.
*Gervini, D. (2012). Outlier detection and trimmed estimation for general functional data. Statistica Sinica, 22:1639–1660.
*Goldstein, M. and Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS one, 11(4):e0152173.
*Green, P. J. and Silverman, B. W. (1993). Nonparametric regression and generalized linear models: a roughness penalty approach. CRC Press.
*Hadjipantelis, P. Z., Aston, J. A., Muller, H.-G., and Evans, J. P. (2015). Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed-effects modeling of mandarin chinese. Journal of the American Statistical Association, 110(510):545–559.
*Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., and Bing, G. (2016). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications.
*Hardin, J., Mitani, A., Hicks, L., and VanKoten, B. (2007). A robust measure of correlation between two genes on a microarray. BMC bioinformatics, 8(1):220.
*Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108.
*He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9):1263–1284.
*Henderson, B. (2006). Exploring between site differences in water quality trends: a functional data analysis approach. Environmetrics, 17(1):65–80.
*Hennig, C. (2014). How many bee species? a case study in determining the number of clusters. In Data Analysis, Machine Learning and Knowledge Discovery, pages 41–49. Springer.
*Hennig, C. and Lin, C.-J. (2015). Flexible parametric bootstrap for testing homogeneity against clustering and assessing the number of clusters. Statistics and Computing, 25(4):821–833.
*Hennig, C., Meila, M., Murtagh, F., and Rocci, R., editors (2015). Handbook of Cluster Analysis. Taylor & Francis, Boca Raton FL.
*Hitchcock, D. B., Booth, J. G., and Casella, G. (2007). The effect of pre-smoothing functional data on cluster analysis. Journal of Statistical Computation and Simulation, 77:1043–1055.
*Hodge, V. J. and Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2):85–126.
*Hormann, S., Kidzin´ski, Ł., and Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(2):319–348.
*Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1):193–218.
*Hubert, M., Rousseeuw, P. J., and Segaert, P. (2015). Multivariate functional outlier detection. Statistical Methods & Applications, 24(2):177–202.
*Hutchinson, M. F. and De Hoog, F. (1985). Smoothing noisy data with spline functions. Numerische Mathematik, 47:99–106.
*Hyndman, R. J. and Shang, H. L. (2010). Rainbow plots, bagplots, and box-plots for functional data. Journal of Computational and Graphical Statistics, 19(1):29–45.
*Jacques, J. and Preda, C. (2013). Funclust: A curves clustering method using functional random variables density approximation. Neurocomputing, 112:164–171.
*Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8):651–666.
*Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.
*James, G. M., Hastie, T. J., and Sugar, C. A. (2000). Principal component models for sparse functional data. Biometrika, 87:587–602.
*James, G. M. and Sugar, C. A. (2003). Clustering for sparsely sampled func- tional data. Journal of the American Statistical Association, 98:397–408.
*Jones, B. L. and Nagin, D. S. (2007). Advances in group-based trajectory modeling and an sas procedure for estimating them. Sociological Methods and Research, 35:542–571.
*Kaufman, L. and Rousseeuw, P. (1987). Clustering by means of medoids. In Dodge, Y., editor, Statistical data analysis based on the L1-norm and related methods, pages 405–416. North-Holland.
*Kaufman, L. and Rousseeuw, P. J. (1990). Partitioning around medoids (pro- gram pam). In Finding groups in data: an introduction to cluster analysis, pages 68–125. Wiley Online Library.
*Keller, F., Muller, E., and Bohm, K. (2012). Hics: High contrast subspaces for density-based outlier ranking. In Data Engineering (ICDE), 2012 IEEE 28th International Conference on, pages 1037–1048. IEEE.
*Knox, E. M. and Ng, R. T. (1998). Algorithms for mining distancebased outliers in large datasets. In Proceedings of the International Conference on Very Large Data Bases, pages 392–403. Citeseer.
*Kriegel, H.-P., Kroger, P., Schubert, E., and Zimek, A. (2009). Loop: local outlier probabilities. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 1649–1652. ACM.
*Krivobokova, T. and Kauermann, G. (2007). A note on penalized spline smoothing with correlated errors. Journal of the American Statistical Association, 102:1328–1337.
*Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F., Gneiting, T., et al. (2017). Forecaster’s dilemma: extreme events and forecast evaluation. Statistical Science, 32(1):106–127.
*Lin, C.-J., Hennig, C., and Huang, C.-L. (2015). Clustering and a dissimilarity measure for methadone dosage time series. In Proceedings of ECDA-2014, Bremen, Germany, pages 31–41. Springer, Berlin.
*Lin, J.-A., Zhu, H., Mihye, A., Sun, W., and Ibrahim, J. G. (2014). Functional-mixed effects models for candidate genetic mapping in imaging genetic studies. Genetic epidemiology, 38(8):680–691.
*Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank tests. Journal of the American Statistical Association, 88(421):252–260.
*Liu, X. and Yang, M. C. (2009). Simultaneous curve registration and clustering for functional data. Computational Statistics and Data Analysis, 53:1361–1376.
*Maharaj, E. A. (1996). A significance test for classifying arma models. Journal of Statistical Computation and Simulation, 54:305–331.
*McLachlan, G. J. and Basford, K. E. (1988). Mixture models: Inference and applications to clustering. Marcel Dekker.
*McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of longitudinal data. Canadian Journal of Statistics, 38:153–168.
*Meila, M. (2003). Comparing clusterings by the variation of information. In Colt, volume 3, pages 173–187. Springer.
*Melnykov, V., Maitra, R., et al. (2010). Finite mixture models and model-based clustering. Statistics Surveys, 4:80–116.
*Milligan, G. W. and Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2):159–179.
*Montero, P. and Vilar, J. A. (2014). TSclust: An R package for time series clustering. Journal of Statistical Software, 62:1–43.
*Muller, H.-g. (2005). Functional modelling and classification of longitudinal data. Scandinavian Journal of Statistics, 32(2):223–240.
*Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2:86–97.
*Nowak, E. (1985). Wskaznik podobienstwa wynikow podzialow. Przeglad Statystyczny, 1:41–48.
*Oh, H.-K., Yoon, S.-H., and Kim, S.-W. (2012). Hierarchical clustering and outlier detection for effective image data organization. In Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, page 18. ACM.
*Olea, R. A. (1974). Optimal contour mapping using universal kriging. Journal of Geophysical Research, 79(5):695–702.
*Ordonez, C., Mohanam, N., and Garcia-Alvarado, C. (2014). Pca for large data sets with parallel data summarization. Distributed and Parallel Databases, 32(3):377–403.
*Pamula, R., Deka, J. K., and Nandi, S. (2011). An outlier detection method based on clustering. In Emerging Applications of Information Technology (EAIT), 2011 Second International Conference on, pages 253–256. IEEE.
*Park, S. Y. and Staicu, A.-M. (2015). Longitudinal functional data analysis. Stat, 4(1):212–226.
*Pourahmadi, M., Daniels, M. J., and Park, T. (2007). Simultaneous modelling of the cholesky decomposition of several covariance matrices. Journal of Multivariate Analysis, 98(3):568–587.
*R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
*Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. ACM SIGMOD Record, 29:427–438.
*Ramsay, J. and Silverman, B. (2005a). Functional Data Analysis. Springer.
*Ramsay, J. and Silverman, B. (2005b). Smoothing functional data with a roughness penalty. In Functional Data Analysis, pages 81–109. Springer.
*Ramsay, J. O. and Li, X. (1998). Curve registration. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2):351–363.
*Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846–850.
*Reiss, P. T. and Ogden, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics, 66(1):61–69.
*Reza, M. S. and Ruhi, S. (2015). Multivariate outlier detection using independent component analysis. Science Journal of Applied Mathematics and Statistics, Science Publishing Group, USA, 3(4):171–176.
*Rice, J. A. (2004). Functional and longitudinal data analysis: perspectives on smoothing. Statistica Sinica, pages 631–647.
*Rousseeuw, P. J., Ruts, I., and Tukey, J. W. (1999). The bagplot: a bivariate boxplot. The American Statistician, 53(4):382–387.
*Ruiz-Medina, M., Espejo, R., Ugarte, M., and Militino, A. (2014). Functional time series analysis of spatio-temporal epidemiological data. Stochastic environmental research and risk assessment, 28(4):943.
*Said, A. B., Hadjidj, R., and Foufou, S. (2017). Cluster validity index based on jeffrey divergence. Pattern Analysis and Applications, 20(1):21–31.
*Sawant, P., Billor, N., and Shin, H. (2012). Functional outlier detection with robust functional principal component analysis. Computational Statistics, 27(1):83–102.
*Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., and Chang, L. (2003). A novel anomaly detection scheme based on principal component classifier. Technical report, MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRICAL AND COMPUTER ENGINEERING.
*Slaets, L., Claeskens, G., and Hubert, M. (2012). Phase and amplitude-based clustering for functional data. Computational Statistics and Data Analysis, 56(7):2360–2374.
*S??rensen, H., Goldsmith, J., and Sangalli, L. M. (2013). An introduction with medical applications to functional data analysis. Statistics in medicine, 32(30):5222–5240.
*Speed, T. (1991). Comment on “That blup is a good thing: The estimation of random effects”. Statistical Science, 6:42–44.
*Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document clustering techniques. In KDD workshop on text mining, volume 400, pages 525–526. Boston.
*Strehl, A., Ghosh, J., and Mooney, R. (2000). Impact of similarity measures on web-page clustering. In Workshop on artificial intelligence for web search (AAAI 2000), volume 58, page 64.
*Tax, D. M. and Duin, R. P. (1999). Support vector domain description. Pattern recognition letters, 20(11):1191–1199.
*Tibshirani, R. and Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3):511– 528.
*Tryon, R. C. (1939). Cluster analysis: Correlation profile and orthometric (factor) analysis for the isolation of unities in mind and personality. Edwards brother, Incorporated, lithoprinters and publishers.
*Tucker, J. D., Wu, W., and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis, 61:50–66.
*Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the international congress of mathematicians, volume 2, pages 523–531.
*Tzeng, S., Hennig, C., Li, Y.-F., and Lin, C.-J. (2017). Dissimilarity for functional data clustering based on smoothing parameter commutation. Statistical Methods in Medical Research, to appear.
*Tzeng, S. and Huang, H.-C. (2017). Resolution adaptive fixed-rank kriging. Technometrics, to appear.
*Vilar, J. A., Alonso, A. M., and Vilar, J. M. (2010). Non-linear time series clustering based on non-parametric forecast densities. Computational Statistics and Data Analysis, 54:2850–2865.
*Vines, B. W., Nuzzo, R. L., and Levitin, D. J. (2005). Analyzing temporal dynamics in music. Music Perception: An Interdisciplinary Journal, 23(2):137–152.
*Wahba, G. (1990). Spline models for observational data. SIAM.
*Wahba, G. and Wendelberger, J. (1980). Some new mathematical methods for variational objective analysis using splines and cross validation. Monthly weather review, 108(8):1122–1143.
*Wallace, D. L. (1983). Comment. Journal of the American Statistical Association, 78(383):569–576.
*Wang, K. and Gasser, T. (1999). Synchronizing sample curves nonparametrically. Annals of Statistics, pages 439–460.
*Wang, Y. (1998). Smoothing spline models with correlated random errors. Journal of the American Statistical Association, 93:341–348.
*Warren Liao, T. (2005). Clustering of time series data–a survey. Pattern recognition, 38:1857–1874.
*Wolfe, J. H. (1963). Object cluster analysis of social areas. PhD thesis, University of California.
*Yao, F., Muller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470):577–590.
*Yassouridis, C. (2017). funcy: Functional Clustering Algorithms. R package version 0.8.6.
*Zhang, X., Wang, J.-L., et al. (2016). From sparse to dense functional data and beyond. The Annals of Statistics, 44(5):2281–2321.
*Zhang, Z. and Muller, H.-G. (2011).Functional density synchronization.
*Computational Statistics & Data Analysis, 55(7):2234–2249.
*Zhou, L. and Pan, H. (2014). Principal component analysis of two-dimensional functional data. Journal of Computational and Graphical Statistics, 23(3):779–801.
*Zhou, S. and Shen, X. (2001). Spatially adaptive regression splines and accurate knot selection schemes. Journal of the American Statistical Association, 96(453):247–259.
*Zimek, A., Schubert, E., and Kriegel, H.-P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5):363–387.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top