跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊昀尉
研究生(外文):Yun-Wei Yang
論文名稱:利用循序分批式濾膜生物反應槽探討並模擬同時硝化脫硝現象之研究
論文名稱(外文):Study and modeling simultaneous nitrification and denitrification (SND) phenomenon in sequencing batch membrane bioreactor (SBMBR) systems
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Cheng-Nan Chang
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:74
中文關鍵詞:同時硝化脫硝循序分批式濾膜生物反應槽氧化還原電位(ORP)即時控制策略Nernst模式回收水
外文關鍵詞:simultaneous nitrification and denitrification simultaneous nitrification and denitrification (SND)sequencing batch membrane bioreactor (SBMBR)oxidation-reduction potential (ORP)real-time control strategyNernst modelrecycle watertaiwanafterissue
相關次數:
  • 被引用被引用:3
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
近年文獻中指出,在低溶氧環境(如DO: 0-1 mg/L)下,生物好氧硝化及缺氧脫硝之兩階段反應同時完成,稱為同時硝化脫硝(Simultaneous nitrification and denitrification, SND)。SND程序可以解決傳統程序中好氧段及缺氧段操作上之衝突,而SND反應過程中亦不會產生潛在性危害的中間產物。本研究的主要目的是在循序分批式濾膜生物反應槽(Sequencing batch membrane bioreactor, SBMBR)中利用線上監控參數(如ORP,pH與DO)監控同時硝化脫硝現象並使用從Nernst equation推導的模式來模擬之,並且探討應用SBMBR放流水來當做回收用水的可行性。結果顯示高碳氮比(TCOD/NH4-N = 11.0)與低溶氧環境(DO = 0-1 mg/L)可加強SND現象,線上監控的圖形也可以指出反應的終點,並且在模式模擬下也有相當良好的結果。台灣水資源短缺,水回收再利用的議題已經逐漸受到重視,故本研究之SBMBR放流水在經過0.4 μm的中空纖維濾膜過濾之後,只需要再經過加氯消毒或是臭氧化步驟即可用作各類型用途之回收水,例如噴灑用水(灌溉用水與冷卻用水等)、景觀用水(洗車用水)與廁所沖洗用水,尚須注意經過消毒處裡之後不能接觸人體的原則,並且不能儲存需立即使用。
Nowadays, some scholars reported that nitrification and denitrification can occur concurrently in one reactor under low DO condition (ex. DO: 0-1 mg/L), this is so-called simultaneous nitrification and denitrification (SND). SND reaction can solve the problems for alternating oxic and anoxic period in conventional process. The intermediates, which are potentially harmful to human health, were not accumulated during SND reaction. The objective of this study is to analyze SND phenomenon in sequencing batch membrane bioreactors (SBMBRs) with online monitoring parameters, and discuss the feasibility of the effluent from SBMBR as recycle water. The results show high C/N ratio (TCOD/NH4-N = 11.0) and low-DO (0-1 mg/L) condition can enhance SND phenomenon; online monitoring profiles (ORP, pH and DO) can point out the end-point of reactions. The model developed from Nernst equation can fit satisfactorily in all runs. The shortage of water resource in Taiwan is a serious domestic problem, thus, water recycling issue gradually becomes a great cooncern. In this study, the effluent from SBMBR, which was filtrated with the hollow fiber membrane of 0.4 μm porous size, may be used as recycle water with additional disinfection process of ozonation or chlorination, such as sprinkling water (irrigation and cooling water), landscape water (car washing water) and toilet flushing water. However, it should be noticed that the water after disinfection process can not contact with human body and be storaged.
Index
Chapter 1 Introduction.......................................................................1

Chapter 2 Literature review...............................................................3
2-1 Simultaneous nitrification and denitrification (SND) process
...............................................................................................................3
2-2 Sequencing batch membrane bioreactor (SBMBR) system........8
2-2-1 SBMBR.................................................................................8
2-2-2 Hollow fiber membrane (HFM)..........................................11
2-2-2-1 Porous size and materials of HFM...............................11
2-2-2-2 Clogging problem in membrane filtration....................13
2-3 Online monitoring parameters and Nernst equation modeling
.............................................................................................................15
2-3-1 Online monitoring parameters………………………………15
2-3-2 Nernst equation modeling…………………………………..16
2-4 Objectives..................................................................................19

Chapter 3 Experimental methods and equipment.........................20
3-1 Experimental equipment and monitoring systems in SBMBR
.............................................................................................................20
3-1-1 Experimental equipment.....................................................20
3-1-2 Monitoring systems.............................................................21
3-2 SBMBR system and operation...................................................22
3-2-1 Synthetic stock feed............................................................22
3-2-2 System operation procedure................................................23
3-3 Analytical methods....................................................................28

Chapter 4 Results and discussion.....................................................29
4-1 SND phenomenon in SBMBR system.......................................29
4-1-1 SND phenomenon...............................................................29
4-1-1-1 System with limited carbon case: Run 1 (C/N = 8.0)
......................................................................................................29
4-1-1-2 System with excess carbon case: Run 2 (C/N = 11.0)
......................................................................................................34
4-1-2 The alkalinity profiles in SND process...............................39
4-1-3 System performance............................................................41
4-2 Real-time control strategies and modeling................................45
4-2-1 Real-time control strategies................................................45
4-2-1-1 ORP profile...................................................................45
4-2-1-2 pH profile.....................................................................46
4-2-1-3 DO profile....................................................................47
4-2-1-4 Real-time control of SND phenomenon.......................49
4-2-2 SND model..........................................................................50
4-2-2-1 System with limited carbon case: Run 1 (C/N = 8.0)
......................................................................................................51
4-2-2-2 System with excess carbon case: Run 2 (C/N = 11.0)
......................................................................................................52
4-3 Membrane operational characteristics.......................................55
4-3-1 Clogging problem of membrane filtration..........................55
4-3-2 Feasibility of SBMBR effluent reusing..............................58

Chapter 5 Conclusions and suggestions..........................................61
5-1 Conclusions................................................................................61
5-2 Suggestions................................................................................63

References..............................................................................................64

Appendix...............................................................................................71
Membrane washing………………………………………………….71
Al-Ghusain I., Huang J., Hao O. J. and Lim B. S. (1994) Using pH as a real time control parameter for wastewater treatment and sludge digestion process. Water Science and Technology 30(4), 159-168.

Al-Ghusain I., Hamoda M. F. and El-Ghany M. A. (2002) Nitrogen transformations during aerobic/anoxic sludge digestion. Bioresource Technology 85(2), 147-154.

APHA, AWWA and WEF. (1998) Standard methods for examination of water and wastewaters, 20th edition. American Public Health Association, Washington D. C., USA.

Bliss P. and Barnes D. (1986) Modeling nitrification in plant scale activated sludge. Water Science and Technology 18(6), 139-148.

Bouhabila E. H., Aïm R. B. and Buisson H. (2001) Fouling characterization in membrane bioreactors. Separation and Purification Technology 22-23, 123-132.

Burbank N. P. Jr. (1981) ORP-a tool for process control. Process Isl. An. Conf. On Avt. Sludge Conf. Arthn Tech. Wisc., 65-79.

Chang C. H. and Hao O. J. (1996) Sequencing batch reactor system for nutrient removal: ORP and pH profiles. Journal of Chemical Technology and Biotechnology 67(1), 27-38.

Chang C. N., Cheng H. B. and Chao A. C. (2004) Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes. Environmental Science and Technology 38(6), 1807-1812.

Chang I. S., Bag S. O. and Lee C. H. (2001) Effects of membrane fouling on solutes rejection during membrane filtration of activated sludge. Process Biochemistry 36(8-9), 855-860.

Dalsgaard T., de Zwart J., Robertson L. A., Kuenen J. G. and Revsbech N. P. (1995) Nitrification, denitrification and growth in artificial Thiosphaera pantotropha biofilms as measured with a combined microsensor for oxygen and nitrous oxide. FEMS Microbiology Ecology 17(2), 137-147.

Defrance L., Jaffrin M. Y., Gupta B., Paullier P. and Geaugey V. (2000) Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresource Technology 73(2), 105-112.

Demoulin G., Goronszy M. C., Wutscher K. and Forsthuber E. (1997) Co-current nitrification/denitrification and biological P-removal in cyclic activated sludge plants by redox controlled cycle operation. Water Science and Technology 35(1), 215-224.

Dijk L. and Roncken G. C. G. (1997) Membrane bioreactor for wastewater treatment: The state of the art and new development. Water Science and Technology 35(10), 35-41.

Fuerhacker M., Bauer H., Ellinger R., Sree U., Schmid H., Zibuschka F. and Puxbaum H. (2000) Approach for a novel control strategy for simultaneous nitrification-denitrification in activated sludge reactors. Water Research 34(9), 2499-2506.

Gander M., Jefferson B. and Judd S. (2000) Aerobic MBRs for domestic wastewater treatment: A review with cost considerations. Separation and Purification Technology 18(2), 119-130.

Gupta A. B. (1997) Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme and Microbial Technology 21(8), 589-595.

Gupta S. K., Raja S. M. and Gupta A. B. (1994) Simultaneous nitrification and denitrification in a rotating biological contactor. Environmental Technology 15(2), 145-153.

Halling-Soerensen B. and Hjuler H. (1992) Simultaneous nitrification and denitrification with an upflow fixed bed reactor applying clinoptilolite as media. Water Treatment 7(1), 77-88.

Hibiya K., Terada A., Tsuneda S. and Hirata A. (2003) Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. Journal of Biotechnology 100(1), 23-32.

Hill G. T., Mitkowski N. A., Aldrich-Wolfe L., Emele L. R., Jurkonie D. D., Ficke A., Maldonado-Ramirez S., Lynch S. T. and Nelson E. B. (2000) Methods for assessing the composition and diversity of soil microbial communities. Appllied Soil Ecology 15(1), 25-36.

Holman J. B. and Wareham D. G. (2005) COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochemical Engineering Journal 22(2), 125-133.

Irvine R. L., Murthy D. V. S., Arora M. L., Copeman J. L. and Heidman J. A. (1987) Analysis of full-scale SBR operation at Grundy Centre, Iowa. Journal of Water Pollution Control Federal 59(3), 132-138.

Keller J., Subramaniam K., Gösswein J. and Greenfield P. F. (1997) Nutrient removal from industrial wastewater using single tank sequencing batch reactors. Water Science and Technology 35(6), 137-144.

Khanal S. K. and Huang J.-C. (2003) ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Research 37(9), 2053-2062.

Kishida N., Kim J.-H., Chen M. X., Sasaki H. and Sudo R. (2003) Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. Journal of Bioscience and Bioengineering 96(3), 285-290.

Kishino H., Ishida H., Iwabu H. and Nakano I. (1996) Domestic wastewater reuse using a submerged membrane bioreactor. Desalination 106(1-3), 115-119.

Kugleman I. J. and Spector M. (1988) Nutrient removal in staged biological reactors. Proceedings of the third WPCF Joint Technical Seminar on Sewage Treatment Technology, Tokyo, Japan, May 12-14, 4-27.

Lowe M., Madsen E. L., Schindler K., Smith C., Emrich S., Robb F., and Halden R. U. (2002) Geochemistry and microbial diversity of a trichloroethene-contaminated superfund site undergoing intrinsic in situ reductive dechlorination. FEMS Microbiology Ecology 40(2), 123-134.

Masuda S., Watanabe Y. and Ishiguro M. (1991) Biofilm properties and simultaneous nitrification and denitrification in aerobic rotating biological contactors. Water Science and Technology 23 (7-9), 1355-1363.

Menoud P., Wong C. H., Robinson H. A., Farquhar A., Barford J. P. and Barton G. W. (1999) Simultaneous nitrification and denitrification using SiporaxTM packing. Water Science and Technology 40(4-5), 153-160.

Moriyama K., Sato K., Harada Y., Washiyama K. and Okamoto K. (1990) Renovation of an extended aeration plant for simultaneous biological removal of nitrogen and phosphorus using oxic-anaerobic-oxic process. Water Science and Technology 22(7-8), 61-66.

Munch E. V., Lant L. and Keller J. (1996) Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research 30(2), 277-284.

Muyzer G., de Waal E. C., and Uitterlinden A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59(3), 695-700.

Muyzer G. (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology 2(3), 317-322.

Nagaoka H., Kono S., Yamahishi S. and Miya A. (1999) Influence of organic loading rate on membrane fouling in membrane separation activated sludge process. International Specialized Conference on Membrane Technology in Environmental management, Tokyo, Japan, Nov. 1-4, 242-249.

Peddie C. C., Mavinic D. S. and Jenkins C. J. (1990) Use of ORP for monitoring and control of aerobic sludge digestion. Journal of Environmental Engineering 116(3), 461-471.

Pochana K. and Keller J. (1999) Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology 39(6), 61-68.

Rozzi A., Antonelli M. and Ancari M. (1999) Membrane treatment of secondary textile effluents for direct use. Water Science and Technology 40(4-5), 409-416.

Sen P. and Dentel S. K. (1998) Simultaneous nitrification-denitrification in a fluidized bed reactor. Water Science and Technology 38(1), 247-254.

Shrestha N. K., Shigeru H., Toshiaki K. and Ichiro O. (2002) Dinitrogen production from ammonia by Nitrosomonas europaea. Applied Catalysis A: General 237, 33-39.

Stevens G. M., Barnard J. L. and Rabinowitz B. (1999) Optimizing biological nutrient removal in anoxic zones. Water Science and Technology 39(6), 113-118.

Stephenson T., Judd S., Jefferson B. and Brindle K. (2000) Membrane bioreactors for wastewater treatment, London: IWA Publishing.

Third K. A., Burnett N. and Cord-Ruwisch R. (2003) Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotechnology and Bioengineering 83(6), 706-720.

Ueda T. and Hata K. (1999) Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Water Research 33(12), 2888-2892.

Ueda T., Hata K., Kikuoka Y. and Senio O. (1997) Effects of aeration on suction pressure in a submerged membrane bioreactor. Water Research 31(3), 489-494.

Visvanathan C., Yang B. S., Muttamara S. and Maythanukhraw R. (1997) Application of air backflushing technique in membrane. Water Science and Technology 36(12), 259-266.

Watanabe T., Hashimoto S. and Kuroda M. (2002) Simultaneous nitrification and denitrification in a single reactor using a bioelectrochemical process. Water Science and Technology 46(4-5), 163-169.

Watanabe Y., Masuda S. and Ishiguro M. (1992) Simultaneous nitrification and denitrification in micro-aerobic biofilms. Water Science and Technology 26(3-4), 511-522.

Wareham D. G., Marvinic D. S. and Hall K. J. (1994) Sludge digestion using ORP-regulated aerobic anoxic cycles. Water Research 28(2), 373-384.

Wen C., Huang X. and Qian Y. (1999) Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration. Process Biochemistry 35(3-4), 335-340.

Wrage N., Velthof G. L., van Beusichem M. L. and Oenema O. (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33(12-13), 1723-1732.

Yamamoto K., Hiasa M., Mahmood T. and Matsuo T. (1989) Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Science and Technology 21(4-5), 43-54.

Yoo H. S., Ahn K. H., Lee H. J., Lee K. H., Kwak Y. J. and Song K. G. (1999) Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Research 33(1), 145-154.

Zeng R. J., Lemaire R., Yuan Z. G. and Keller J. (2003) Simultaneous nitrification, denitrification and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering 84(2), 170-178.

Zhang D., Lu P., Long T. and Verstraete W. (2005) The integration of methanogensis with simultaneous nitrification and denitrification in a membrane bioreactor. Process Biochemistry 40(2), 541-547.

Zhao H. W., Mavinic D. S., Oldham W. K. and Koch F. A. (1999) Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Research 33(4), 961-970.

Zipper T., Fleischmann N. and Haberl R. (1998) Development of a new system for control and optimization of small wastewater treatment plants using oxidation-reduction potential (ORP). Water Science and Technology 38(3), 307-314.

經濟部水利司 (1995) 建築物再生水系統設計規範及水質標準之研究

蔡勇斌、邱景民 (2000) 連續流SBR系統自動化處理下水道污水之研究-實廠案例。第十屆下水道技術研討會論文集,85-94。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top