|
Chapter 1 [1.1]J.S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., vol.17, pp.880-891, 2002. [1.2]Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973. [1.3]A. Sugimura, K. Daikoku, N. Imoto and T. Miya, “Wavelength dispersion characteristics of single-mode fibers in low-loss region,” IEEE J. Quantum Electron., vol.QE-16, pp.215-225, 1980. [1.4]A. Karim, P. Abraham, D. Lofgreen, Y.-J. Chiu, J. Piprek and John Bowers, “Wafer bonded 1.55 μm vertical-cavity lasers with continuous-wave operation up to 105°C,” Appl. Phys. Lett., vol.78, pp.2632-2633, 2001. [1.5]Jayaraman, J. C. Geske, M. H. MacDougal, F. H. Peters, T. D. Lowes and T.T. Char, “Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett., vol.34, pp.1405-1407, 1998. [1.6]R. Shau, M. Ortsiefer, J. Rosskopf, G. Böhm, F. Köhler and M.-C. Amann, “Vertical-cavity surface-emitting laser diodes at 1.55 μm with large output power and high operation temperature,” Electron. Lett., vol.37, pp.1295-1296, 2001. [1.7]S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer and L. A. Coldren, “88°C, continuouswave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol.78, pp.1337-1339, 2001. [1.8]M. Yano, H. Imai and M. Takusagawa, “Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers,” J. Appl. Phys., vol.52, pp.3172-3175, 1981. [1.9]N.K. Dutta and R.J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double-heterostructure lasers and Auger recombination,” Appl. Phys. Lett., vol.38, pp.407-409, 1981. [1.10]F. Quochi, J.E. Cunningham, M. Dinu and J. Shah, “Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29 µm,” Electron. Lett., vol.36, pp.2075-2076, 2000. [1.11]T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, “Continuous-wave operation of 1.30µm GaAsSb/GaAs VCSELs,” Electron. Lett., vol.37, pp.566-567, 2001. [1.12]O.B. Shchekin and D.G. Deppe, “Low-threshold high-T0 1.3-µm InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photon. Technol. Lett., vol.14, pp.1231-1233, 2002. [1.13]J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett., vol.36, pp.1384-1385, 2000. [1.14]M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys., vol.35, pp.1273-1275, 1996. [1.15] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen and G. Ebbinghaus, “Electrically pumped 10 Gbit/s MOVPE-grown monolithic 1.3 µm VCSEL with GaInNAs active region,” Electron. Lett., vol.38, pp.322-324, 2002. [1.16]A.W. Jackson, R.L. Naone, M.J. Dalberth, J.M. Smith, K.J. Malone, D.W. Kisker, J.F. Klem, K.D. Choquette, D.K. Serkland and K.M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett., vol.37, pp.355-356, 2001. [1.17]J.C. Phillips, “Bonds and Bands in Semiconductors,” eds. A.M. Alper, J.L. Margrave and A.S. Nowick (Academic Press, New York, 1973).
Chapter 2 [2.1]G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd Edition, Academic Press, San Diego, 1999. [2.2]D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells,” J. Cryst. Growth, vol.221, pp.503-508, 2000. [2.3]H F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, “Low-threshold high-temperature operation of 1.2 µm InGaAs vertical cavity lasers,” Electron. Lett., vol.37, pp.957-958, 2001. [2.4]I C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnström, E. Odling, J. Malmquist, “1260 nm InGaAs vertical-cavity lasers,” Electron. Lett., vol.38, pp.635-636, 2002. [2.5]A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine,” Appl. Phys. Lett., vol.70, pp.2861-2863, 1997. [2.6]F G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers,” Jpn. J. Appl. Phys., vol.41, part1, No.2B, pp.1040-1042, 2002. [2.7]G C. Asplund, P. Sundgren, M. Hammar, “Optimization of MOVPE-grown GaInNAs/GaAs quantum wells for 1.3-µm laser applications,” Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621. [2.8]W. Prost, A. Lindner, P. Velling, A. Wiersch, F. J. Tegude, E. Kuphal, A. Burchard, R. Magerle and M. Deicher, “The role of hydrogen in low-temperature MOVPE growth and carbon doping of In0.53Ga0.47As for InP-based HBT,” J. Cryst. Growth, vol.170, pp.287-291, 1997. [2.9]A.C. Jones, “Metalorganic precursors for vapour phase epitaxy,” J. Cryst. Growth, vol.129, pp.728-773, 1993. [2.10]C C. Asplund, A. Fujioka, M. Hammar, G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, 1999, pp. 437-440. [2.11]X. Yin and F. H. Pollak, “Novel contactless mode of electroreflectance”, Appl. Phys. Lett., vol.59, pp.2305-2307, 1991. [2.12]X. Yin, X. Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin and C. W. Tu, “Nature of band bending at semiconductor surfaces by contactless electroreflectance”, Appl. Phys. Lett., vol.60, pp.1336-1338, 1992. [2.13]F. H. Pollak, F. H. W. Krystek, M. Leibovitch, M. L. Gray and W. S. Hobson, “Contactless electromodulation for the nondestructive, room-temperature analysis of wafer-sized semiconductor device structures,” IEEE J. Selected Topics in Quantum Electron., vol.1, no.4, pp.1002-1010, 1995. [2.14]H. Shen, S. H. Pan, F. H. Pollak and R. N. Sacks, “Electromodulation mechanisms for the uncoupled and coupled states of a GaAs/Ga0.82Al0.18As multiple-quantum-well structure”, Phys. Rev. B, vol.37, pp.10919-10930, 1988. [2.15]F. H. Pollak, “Modulation spectroscopy under uniaxial stress”, Surf. Sci., vol.37, pp.863-895, 1973. [2.16]H. Mathieu, J. Allegre and B. Gil, “Piezomodulation spectroscopy: a powerful investigation tool of heterostructures,” Phys. Rev. B, vol.43, pp.2218-2227, 1991. [2.17]Z. Xu and M. Gal, “Temperature modulated photoluminescence in semiconductor quantum wells”, Superlattice and Microstructures, vol.12, no.3, pp.393-396, 1992.
Chapter 3 [3.1]M. Weyers, M. Sato and H. Ando, “Red shift of photoluminescence and absorption of dilute GaAsN alloy layers,” Jpn. J. Appl. Phys., vol.31, No.7a, pp.L853-L855, 1992. [3.2]M. Kondow, K. Uomi, K. Hosomi and T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source,” Jpn. J. Appl. Phys., vol.33, No.8a, pp.L1056-L1058, 1994. [3.3]W.G. Bi and C.W. Tu, “Bowing paramter of the band-gap energy of GaNxAs1-x,” Appl. Phys. Lett., vol.70, pp.1608-1610, 1997. [3.4]K. Uesugi and I. Suemune, “Bandgap energy of GaNAs alloys grown on (001) GaAs by metalorganic molecular beam epitaxy,” Jpn. J. Appl. Phys., vol.36, No.12a, pp.L1572-L1575, 1997. [3.5]S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin and H. Temkin, “Luminescence of as-grown and thermally annealed GaAsN/GaAs,” Appl. Phys. Lett., vol.72, No.12a, pp.1857-1859, 1998. [3.6]S. Sakai, Y. Ueta and Y. Terauchi, “Band gap energy and band lineup of III-V alloy semiconductors incorporating nitrgen and boron,” Jpn. J. Appl. Phys, vol.32, No.10, pp.4413-4417, 1993. [3.7]S.-H. Wei and A. Zunger, “Giant and composition-dependent optical bowing coefficient in GaAsN alloys,” Phys. Rev. Lett., vol.76, pp.664-667, 1996. [3.8]U. Tisch, E. Finkman and J. Salzman, “The anomalous bandgap bowing in GaAsN,” Appl. Phys. Lett., vol.81, pp.463-465, 2002. [3.9]C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, E.E. Haller, J.F. Geisz and J.M. Olson, “Large, nitrogen-induced increase of the electron effective mass in InyGa1-yNxAs1-x,” Appl. Phys. Lett., vol.76, pp.2409-2411, 2000. [3.10]Y. Zhang, A. Mascarenhas, H.P. Xin and C.W. Tu, “Formation of an impurity band and its quantum confinement in heavily doped GaAs:N” Phys. Rev. B, vol.61, pp.7479-7482, 2000. [3.11]P.N. Hai, W.M. Chen, I.A. Buyanova, H.P. Xin and C.W. Tu, “Direct determination of electron effective mass in GaNAs/GaAs quantum wells,” Appl. Phys. Lett., vol.77, pp.1843-1845, 2000. [3.12]C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz , K. Hingerl, W. Jantsch, D.E. Mars and W. Walukiewicz, “Band structure and optical properties of InyGa1-yAs1-xNx,” Phys. Rev. B, vol.65, pp.035207, 2001. [3.13]W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. olson and S.R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett., vol.82, pp.1221-1224, 1999. [3.14]J.D. Perkins, A. Mascarenhas, Y. Zhang, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, “Nitrogen-activated transitions, level repulsion, and band gap reduction in Ga1-yAs1-xNx with x<0.03,” Phys. Rev. Lett., vol.82, pp.3312-3315, 1999. [3.15]W. Walukiewicz, W. Shan, J.W. Ager III, D.R. Chamberlin, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson and S.R. Kurtz, Proceedings of the 195th Electrochemical Society Meeting, Seattle, WA (The Electrochemical Soc. Inc., Pennington, NJ,1999), vol.99-11, pp.190. [3.16]A. Lindsay and E.P. O’Reilly, “Theory of enhanced bandgap non-parabolicity in GaNxAs1-x and related alloys,” Solid State Commun., vol.112, pp.443-447, 1999. [3.17]H.P. Hjalmarson, P. Vogl, D.J. Wolford and J.D. Dow, “Theory of substitutional deep traps in covalent semiconductors,” Phys. Rev. Lett., vol.44, pp.810-813, 1980. [3.18]X. Liu, M.-E. Pistol, L. Samuelson, S. Schwetlick and W. Seifert, “Nitrogen pair luminescence in GaAs,” Appl. Phys. Lett., vol.56, pp.1451-1453, 1990. [3.19]K.M. Yu, W. Walukiewicz, W. Shan, J.W. Ager III, J. Wu, E.E. Haller, J.F. Geisz, D.J. Friedman and J.M. Olson, “Nitrogen-induced increase of the maximum electron concentration in group III-N-V alloys,” Phys. Rev. B, vol.61, pp.R13337-R13340, 2000. [3.20]J. Wu, W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H.P. Xin and C.W. Tu, “Effect of band anticrossing on the optical transitions in GaAsN/GaAs multiple quantum wells,” Phys. Rev. B, vol.64, pp.085320, 2001. [3.21]M. Hofmann, A. Wagner, C. Ellmers, C. Schlichenmeier, S. Schäfer, F. Höhnsdorf, J. Koch, W. Stolz, S.W. Koch, W.W. Rühle, J. Hader, J.V. Moloney, E. P. O’Reilly, B. Borchert, A.Yu. Egorov and H. Riechert, “Gain spectra of (GaIn)(NAs) laser diodes for the 1.3-�慆-wavelength regime,” Appl. Phys. Lett., vol.78, pp.3009-3011, 2001. [3.22]C. Skierbiszewski, S.P. Lepkoweki, P. Perlin, T. Suski, W. Jantsch, J. Geisz, “Effective mass and conduction band dispersion of GaAsN/GaAs quantum wells,” Physica E, vol.13, pp.1078-1081, 2002. [3.23]W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, H.P. Xin and C.W. Tu, “Band anticrossing in III-N-V alloys,” Phys. Stat. Sol., vol.223, pp.75-85, 2001. [3.24]M. Hetterich, M.D. Dawson, A.Yu. Egorov, D. Bernklau and H. Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content,” Appl. Phys. Lett., vol.76, pp.1030-1032, 2000. [3.25]P.R.C. Kent and A. Zunger, “Theory of electronic structure evolution in GaAsN and GaPN alloys,” Phys. Rev. B, vol.64, pp.115208, 2001. [3.26]P.J.Klar, H.Grüning, W.Heimbrodt, J.Koch, W.Stolz, P.M.A.Vicente, A.M.Kamal Saadi, A.Lindsay and E.P.O´Reilly, “Pressure and temperature dependent studies of GaNxAs1-x/GaAs quantum well structures,” Phys. Stat. Sol. (b), vol.223, pp.163-169, 2001. [3.27]P.J. Klar, H. Grüning, J. Koch, S. Schäfer, K. Volz, W. Stolz, W. Heimbrodt, A. M. Kamal Saadi, A. Lindsay and E. P. O'Reilly, “(Ga, In)(N, As)-fine structure of the band gap due to nearest-neighbor configurations of the isovalent nitrogen”, Phys. Rev. B, vol.64, pp.121203, 2001. [3.28]K. Kim and A. Zunger, “Spatial Correlations in GaInAsN Alloys and their Effects on Band-Gap Enhancement and Electron Localization”, Phys. Rev. Lett, vol.86, pp.2609-2612, 2001. [3.29]R. Magri and A. Zunger, “Real-space description of semiconducting band gaps in substitutional systems”, Phys. Rev. B., vol.44, pp.8672-8684, 1991. [3.30]W.A. Harrison, “Electronic structure and the properties of solids”, Dover, New York, 1989, p.176. [3.31]S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam, “Structural changes during annealing of GaInAsN”, Appl. Phys. Lett., vol.78, pp.748-750, 2001. [3.32]A. Polimeni, G. Baldassarri H. v., H.M. Bissiri, M. Capizzi, M. Fischer, M. Reinhardt and A. Forchel, “Effect of hydrogen on the electronic properties of InxGa1–xAs1–yNy/GaAs quantum wells”, Phys. Rev. B, vol.63, pp.201304, 2001. [3.33]J. Neugebauer and C.G. Van de Walle, “Hydrogen in GaN: Novel Aspects of a Common Impurity”, Phys. Rev. Lett., vol.75, pp.4452-4455, 1995. [3.34]A. Al-Yacoub and L. Bellaiche, “Quantum mechanical effects in (Ga,In)(As,N) alloys”, Phys. Rev. B, vol.62, pp.10847-10851, 2000. [3.35]G. Baldassarri H. v. H., M. Bissiri, A. Polimeni, M. Capizzi, M. Fischer, M. Reinhardt, and A. Forchel, “Hydrogen-induced band gap tuning of (InGa)(AsN)/GaAs single quantum wells”, Appl. Phys. Lett., vol.78, pp.3472-3474, 2001. [3.36]Bissiri, G. Baldassarri Höger von Högersthal, A. Polimeni, V. Gaspari, F. Ranalli, M. Capizzi, A. Amore Bonapasta, F. Jiang, M. Stavola, D. Gollub, M. Fischer, M. Reinhardt, and A. Forchel, “Hydrogen-induced passivation of nitrogen in GaAs1–yNy”, Phys. Rev. B, vol.65, pp.235210, 2002. [3.37]A. Janotti, SB. Zhang, S.H. Wei, C.G. Van de Walle, “Effects of Hydrogen on the Electronic Properties of Dilute GaAsN Alloys”, Phys. Rev. Lett., vol.89, pp.086403, 2002. [3.38]Y.S. Kim and K.J. Chang, “Nitrogen-monohydride versus nitrogen-dihydride complexes in GaAs and GaAs1–xNx alloys”, Phys. Rev. B, vol.66, pp.073313, 2002. [3.39]J.C. Harmand, G. Ungaro, L. Largeau and G. Le Roux, “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN”, Appl. Phys. Lett., vol.77, pp.2482-2484, 2000. [3.40]R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition”, J. Cryst. Growth, vol.195, pp.427-437, 1998. [3.41]F. Höhnsdorf, J. Koch, A. Hasse, K. Volz, A. Schaper, W. Stolz, C. Giannini and L. Tapfer, “Structural properties of (GaIn)(NAs)/GaAs MQW structures grown by MOVPE”, Physica E, vol.8, pp.205-209, 2000. [3.42]F. Höhnsdorf, J. Koch, C. Agert and W. Stolz, “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy)”, J. Cryst. Growth, vol.195, pp.391-396, 1998. [3.43]S. Kurtz, R. Reedy, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. McMahon and J.M. Olson, “Incorporation of nitrogen into GaAsN grown by MOCVD using different precursors”, J. Cryst. Growth, vol.234, pp.318-322, 2002. [3.44]W.Li, M. Pessa and J. Likonen, “Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard's law”, Appl. Phys. Lett., vol.78, pp.2864-2866, 2001. [3.45]R. People and S.K. Sputz, “Band nonparabolicities in lattice-mismatch-strained bulk semiconductor layers”, Phys. Rev. B, vol.41, pp.8431-8439, 1990. [3.46]S. Niki, C.L. Lin, W.S.C. Chang and H.H. Wieder, “Band-edge discontinuities of strained-layer InxGa1–xAs/GaAs heterojunctions and quantum wells”, Appl. Phys. Lett., vol.55, pp.1339-1341, 1989. [3.47]S.L. Chuang, “Physics of optoelectronic devices”, John Wiley & Sons, 1995. [3.48]J.P. Reithmaier, R. Höger and H. Riechert, “Experimental evidence for the transition from two- to three-dimensional behavior of excitons in quantum-well structures”, Phys. Rev. B, vol.43, pp.4933–4938, 1991. [3.49]D. Chandrasekhar, D.J. Smith, S. Strite, M.E. Lin and H. Morkoc, “Characterization of group III-nitride semiconductors by high-resolution electron microscopy”, J. Cryst. Growth, vol.152, pp.135-142, 1995. [3.50]M.E. Sherwin, T.J. Drummond, “Predicted elastic constants and critical layer thickness for cubic phase AlN, GaN, and InN on ��-SiC”, J. Appl. Phys., vol.69, pp.8423-8425, 1991. [3.51]J.J. Coleman, "Strained layer quantum well heterostructure lasers", in Peter S. Zory, Jr. (Ed.), “Quantum Well Lasers”, Academic Press, ISBN 0-12-781890-1, pp.378, 1993.
Chapter 4 [4.1]R.G. Waters, P.K. York, K.J. Beernink, and J.J. Coleman, “Viable strained-layer laser at λ=1100 nm,” J. Appl. Phys., vol.67, pp.1132-1134, 1990. [4.2]M. Kudo and T. Mishima, “Improved photoluminescence properties of highly strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy,” J. Appl. Phys., vol.78, pp.1685-1688, 1995. [4.3]D. Schlenker, T. Miyamoto, Z.B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells,” J. Cryst. Growth, vol.221, pp.503-508, 2000. [4.4]T.K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, “High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm,” IEEE Photon. Technol. Lett., vol.14, pp.887-889, 2002. [4.5]J.W. Matthews and A.E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth, vol.27, no.5, pp.118-125, 1974. [4.6]S. Kurtz, R. Reedy, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. MaMahon and J.M. Olson, “Incorporation of nitrogen into GaAsN grown by MOCVD using different precursors,” J. Cryst. Growth, vol.234, pp.318-322, 2002. [4.7]A. Ougazzaden, Y. Le Bellego, E.V.K. Rao, M. Juhel, L. Leprince and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and teriarybutylarsine,” Appl. Phys. Lett., vol.70, pp.2861-2863, 1997. [4.8]U.W. Pohl, C. Möller, K. Knorr, W. Richter, J. Gottfriedsen, H. Schumann, K. Rademann and A. Fielicke, “Tertiarybutylhydrazine: a new precursor for the MOVPE of group III-nitrides,” Mat. Sci. Eng. B, vol.59, pp.20-23, 1999. [4.9]Z. Pan, T. Miyamoto, D. Schlenker, S. Sato, F. Koyama and K. Iga, “Low temperature growth of GaInNAs/GaAs quantum wells by metalorganic chemical vapor deposition using tertiarybutylarsine,” J. Appl. Phys., vol.84, pp.6409-6411, 1998. [4.10]A. Moto, S. Tanaka, N. Ikoma, T. Tanabe, S. Takagishi, M. Takahashi and T. Katsuyama, “Metalorganic Vapor Phase Epitaxial Growth of GaNAs Using Tertiarybutylarsine (TBA) and Dimethylhydrazine (DMHy),” Jpn. J. Appl. Phys., vol.38, pp.1015-1018, 1999. [4.11]S. Kurtz, R. Reedy, B. Keyes, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. McMahon and J.M. Olson, “Evaluation of NF3 versus dimethylhydrazine as N sources for GaAsN,” J. Cryst. Growth, vol.234, no.2-3, pp.323-326, 2002. [4.12]A. Moto, M. Takahashi, S. Takagishi, “Hydrogen and carbon incorporation in GaInNAs,” J. Cryst. Growth, vol.221, pp.485-490, 2000. [4.13]M. Heimbuch, A. Holmes, C. Reaves, M. Mack, S. Denbaars and L. Coldren, “Tertiarybutylarsine and tertiarybutylphosphine for the MOCVD growth of low-threshold 1.55 �慆 InxGa1-xAs/InP quantum-well lasers,” J. Electron. Mater., vol.23, pp.87, 1994. [4.14]R. T. Lee and G. B. Stringfellow, “Pyrolysis of 1,1 dimethylhydrazine for OMVPE growth,” J. Electron. Mater., vol.28, pp.963-969, 1999. [4.15]Y. Qiu, C. Jin, S. Francoeur, S. A. Nikishin, and H. Temkin, “Metalorganic molecular beam epitaxy of GaAsN with dimethylhydrazine,” Appl. Phys. Lett., vol.72, pp.1999-2001, 1998. [4.16]C. Jin, S. A. Nikishin, V. I. Kuchinskii, H. Temkin, and M. Holtz, “Metalorganic molecular beam epitaxy of (In)GaAsN with dimethylhydrazine,” J. Appl. Phys., vol.91, pp.56-64, 2002. [4.17]E. Bourret-Courchesne, Q.Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium,” J. Cryst. Growth, vol.217, pp.47-54, 2000. [4.18]A. J. Ptak, Sarah Kurtz, C. Curtis, R. Reedy, and J. M. Olson, “Incorporation effects in MOCVD-grown (In)GaAsN using different nitrogen precursors,” J. Cryst. Growth, vol.243, pp.231-237, 2002. [4.19]X. Wei, G. H. Wang, G. Z. Zhang, X. P. Zhu, X. Y. Ma, and L. H. Chen, “Metalorganic chemical vapor deposition of GaNAs alloys using different Ga precursors,” J. Cryst. Growth, vol.236, no.4, pp.516-522, 2002. [4.20]Katsuhiro Uesugi and Ikuo Suemune, “Metalorganic molecular beam epitaxy of GaNAs alloys on (0 0 1)GaAs,” J. Cryst. Growth, vol.189/190, pp.490-495, 1998. [4.21]M. Weyers and M. Sato, “Growth of GaAsN alloys by low-pressure metalorganic chemical vapor deposition using plasma-cracked NH3,” Appl. Phys. Lett., vol.62, pp.1396-1398, 1993. [4.22]D.J. Friedman, J.F. Geisz, S.R. Kurtz, J.M. Olson, R. Reedy, “Nonlinear dependence of N incorporation on In content in GaInNAs,” J. Cryst. Growth, vol.195, pp.438-443, 1998. [4.23]T. Miyamoto, T. Kageyama, S. Makino, D. Schlenker, F. Koyama, K. Iga, “CBE and MOCVD growth of GaInNAs,” J. Cryst. Growth, vol.209, pp.339-344, 2000. [4.24]R. Bhat, C. Caneau, L. Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,” J. Cryst. Growth, vol.195, pp.427-437, 1998. [4.25]W.A. Harrison, “Electronic structure and the properties of solids”, Dover, New York, 1989, p.176. [4.26]F. Höhnsdorf, J. Koch, C. Agert, W. Stolz, “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy)”, J. Cryst. Growth, vol.195, pp.391-396, 1989. [4.27]C.S. Peng, E.-M. Pavelescu, T. Jouhti, J. Konttinen, I.M. Fodchuk, Y. Kyslovsky and M. Pessa, “Suppression of interfacial atomic diffusion in InGaNAs/GaAs heterostructures grown by molecular-beam epitaxy”, Appl. Phys. Lett., vol.80, pp.4720-4722, 2002. [4.28]R. Kudrawiec, G. Sek and J. Misiewicz, “Explanation of annealing-induced blueshift of the optical transitions in GaInAsN/GaAs quantum wells”, Appl. Phys. Lett., vol.83, pp.2772-2774, 2003. [4.29]R. Kudrawiec, G. Sek and J. Misiewicz, “Explanation of annealing-induced blueshift of the optical transitions in GaInAsN/GaAs quantum wells”, Appl. Phys. Lett., vol.83, pp.2772-2774, 2003. [4.30]X. Liang, D. Jiang, B. Sun, L. Bian, Z. Pan, L. Li, R. Wu, “The effects of concomitant In and N incorporation on the photoluminescence of GaInNAs”, J. Cryst. Growth, vol.243, pp.261-266, 2002. [4.31]R.J. Potter, N. Balkan, H. Carrère, A. Arnoult, E. Bedel and X. Marie, “Effect of nitrogen fraction on the temperature dependence of GaNAs/GaAs quantum-well emission”, Appl. Phys. Lett., vol.82, pp.3400-3402, 2003. [4.32]J. Misiewicz, P. Sitarek, K. Ryczko, R. Kudrawiec, M. Fischer, M. Reinhardt, A. Forchel, “Influence of nitrogen on carrier localization in InGaAsN/GaAs single quantum wells”, Microelectronics Journal, vol.34, pp.737-739, 2003. [4.33]A. Kaschner, T. Lüttgert, H. Born, A. Hoffmann, A. Yu. Egorov and H. Riechert, “Recombination mechanisms in GaInNAs/GaAs multiple quantum wells”, Appl. Phys. Lett., vol.78, pp.1391-1393, 2001. [4.34]L. Grenouillet, C. Bru-Chevallier, G. Guillot, P. Gilet, P. Duvaut, C. Vannuffek, A. Million and A. Chenevas-Paule, “Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well”, Appl. Phys. Lett., vol.76, pp.2241-2243, 2000. [4.35]B.Q. Sun, D.S. Jiang, Z. Pan, L.H. Ki, R.H. Wu, “Optical transitions and type-II band lineup of MBE-grown GaNAs/GaAs single-quantum-well structures”, J. Cryst. Growth, vol.227-228, pp.501-505, 2001. [4.36]R.J. Potter, N. Balkan, X. Marie, M. Senes, H. Carrère, A. Arnoult and C. Fontaine, “Time resolved PL study of GaInNAs quantum wells”, IEE Proc.-Optoelectron., vol.150, pp.75-76, 2003. [4.37]X.P. Xin, K.L. Kavanagh, Z.Q. Zhu and C.W. Tu, “Observation of quantum dot-like behavior of GaInNAs in GaInNAs/GaAs quantum wells”, Appl. Phys. Lett., vol.74, pp.2337-2339, 1999. [4.38]X.P. Xin, K.L. Kavanagh, Z.Q. Zhu and C.W. Tu, “Quantum dot-like behavior of GaInNAs in GaInNAs/GaAs quantum wells grown by gas-source molecular-beam epitaxy”, J. Vac. Sci. Technol. B, vol.17, pp.1649-1653, 1999. [4.39]R. Singh, R.J. Molnar, M.S. Ünlü and T.D. Moustakas, “Intensity dependence of photoluminescence in GaN thin films”, Appl. Phys. Lett., vol.64, pp.336-338, 1994. [4.40]J.I. Pankove, “Optical Processes in Semiconductors”, Dover, New York, 1975. [4.41]M. Vening, D.J. Dunstan and K.P. Homewood, “Evidence for EL6 (Ec– 0.35 eV) acting as a dominant recombination center in n-type horizontal Bridgman GaAs”, J. Appl. Phys., vol.61, pp.5047-5050, 1987. [4.42]T.K. Ng, S.F. Yoon, W.J. Fan, W.K. Loke, S.Z. Wang, S.T. Ng, “Photoluminescence quenching mechanism is GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy”, J. Vac. Sci. Technol. B, vol.21, pp.2324-2328, 2003.
Chapter 5 [5.1]E. Greger, K. H. Gulden, P. Riel, H. P. Schweizer, M. Moser, G. Schmiedel, P. Kiesel and G. H. Dohler, “Polarization effect in light emitting diodes with ordered GaInP active layers,” Appl. Phys. Lett., vol.68, pp.2383-2385, 1996. [5.2]Z. L. Liau, S. C. Palmateer, S. H. Groves, J. N. Walpole and L. J. Missaggia, “Low-threshold InGaAs strained-layer quantum-well lasers ( =0.98 µm) with GaInP cladding layers and mass-transported buried heterostructure,” Appl. Phys. Lett., vol.60, pp.6-8, 1992. [5.3]T. Katsuyama, T. Yoshida, J. Shinkai, J. Hashimoto, and H. Hayashi, “High temperature ( 150°C) and low threshold current operation of AlGaInP/GaxIn1–xP strained multiple quantum well visible laser diodes,” Appl. Phys. Lett., vol.59, pp.3351-3353, 1991. [5.4]D. A. Ahmari, G. Raghavan, Q. J. Hartmann, M. L. Hattendorf, M. Peng, and G. E. Stillman, “Temperature dependence of InGaP/GaAs heterojunction bipolar transistor DC and small-signal behavior,” IEEE Trans. Electron. Dev., vol.46, No.4, pp.634-640, 1999. [5.5]H. Y. Yow, P. A. Houston, C. C. Button, T. W. Lee, and S. J. Roberts, “Heterojunction bipolar transistors in AlGaInP/GaAs grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., vol.76, No.12, pp.8135-8141, 1994. [5.6]Y. F. Yang, C. C. Hsu and E. S. Yang, “Integration of GalnP/GaAs heterojunction bipolar transistors and high electron mobility transistors,” IEEE Electron Device Lett. , vol.17, No.7, pp.363-365, 1996. [5.7]K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, and J. M. Olson, “29.5%-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett., vol.65, No.8, pp.989-991, 1994. [5.8]J. D. Perkins, A. Mascarenha, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs1-xNx with x < 0.03,” Phys. Rev. Lett., vol.82, pp.3312-3315, 1999. [5.9]K. M. Yu, W. Walukiewicz, J. Wu, J. W. Beeman, J. W. Ager III, E. E. Haller, W. Shan, H. P. Xin and C. W. Tu, “Synthesis of InNxP1–x thin films by N ion implantation,” Appl. Phys. Lett., vol.78, No.8, pp.1077-1079, 2001. [5.10]W. Shan, W. Walukiewicz, K. M. Yu, J. Wu, J. W. Ager III, E. E. Haller, H. P. Xin and C. W. Tu, “Nature of the fundamental band gap in GaNxP1–x alloys,” Appl. Phys. Lett., vol.76, No.22, pp.3251-3253, 2000. [5.11]W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys,” Phys. Rev. Lett., vol.82, No.6, pp.1221-1224, 1999. [5.12]P. C. Chang, A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou and E. Armour, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl. Phys. Lett., vol.76, No.16, pp.2262-2264, 2000. [5.13]Y. G. Hong, R. André and C. W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup,” J. Vac. Sci. Technol. B, vol.19, No.4, pp.1413-1416, 2001. [5.14]R. J. Welty, Y. G. Hong, H. P. Xin, K. Mochizuki, C. W. Tu, P. M. Asbeck, Proceedings 2000 IEEE/Cornell Conference on High Performance Devices, Piscataway, USA, pp.33. [5.15] Y. G. Hong, F. S. Juang, M. H. Kim and C. W. Tu, “Growth and characterization of GaInNP grown on GaAs substrates,” J Crystal Growth, vol.251, No.1-4, pp.437-442, 2003. [5.16]C. W. Tu, Y. G. Hong, R. André and H. P. Xin, Proceedings 2001 International Conference on Indium Phosphide and Related Materials 13th IPRM, Nara, Japan, pp.591-594. [5.17]A. J. Ptak, S. Kurtz, C. Curtis, R. Reedy and J. M. Olson, “Incorporation effects in MOCVD-grown (In)GaAsN using different nitrogen precursors,” J. Cryst. Growth, vol.243, No.2, pp.231-237, 2002. [5.18]Y. P. Varshni, Physica, vol.34, pp.149, 1967. [5.19]P. Lantenschlager, M. Garriga, S. Logothetidis and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B, vol.35, No.17, pp.9174-9189, 1987. [5.20]L. Viña, S. Logothetidis and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B, vol.30, No.4, pp.1979, 1984. [5.21]F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng. R, vol.10, No.7-8, pp.275, 1993. [5.22]C. W. Tu, W. G. Bi, Y. Ma, J. P. Zhang, L. W. Wang and S. T. Ho, “A novel material for long-wavelength lasers: InNAsP,” IEEE J. Sel. Top. Quantum Electron., vol.4, No.3, pp.510-513, 1998. [5.23]J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearah and K. C. Hsieh, “Luminescence quenching and the formation of the GaP1–xNx alloy in GaP with increasing nitrogen content,” Appl. Phys. Lett., vol.60, No.20, pp.2540-2542, 1992. [5.24]W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1 – x,” Appl. Phys. Lett., vol.70, No.12, pp.1608-1610, 1997. [5.25]G. Hatakoshi, K. Itaya, M. Ishikawa, M. Okajima and Y. Uematsu, “Short-wavelength InGaAlP visible laser diodes,” IEEE J. Quantum Electron., vol.27, No.6, pp.1476-1482, 1991. [5.26]H. Sugawara, M. Ishikawa and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol.58, No.10, pp.1010-1012, 1991. [5.27]A. Gomyo, T. Suzuki and S. Iijima, “Observation of Strong Ordering in GaxIn1-xP alloy semiconductors,” Phys. Rev. Lett., vol.60, No.25, pp.2645-2648, 1988. [5.28]S. H. Wei and A. Zunger, “Optical properties of zinc-blende semiconductor alloys: Effects of epitaxial strain and atomic ordering,” Phys. Rev. B, vol.49, No.20, pp.14337-14351, 1994. [5.29]P. Ernst, C. Geng, F. Scholz, H. Schweizer, Y. Zhang and A. Mascarenhas, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett., vol.67, No.16, pp.2347-2349, 1995. [5.30]H. Kressel, C. I. Nuese and I. J. Ladany, “Luminescence from In0.5Ga0.5P prepared by vapor-phase epitaxy,” J. Appl. Phys., vol.44, No.7, pp.3266-3272, 1973. [5.31]Y. K. Su, C. H. Wu, S. H. Hsu, S. J. Chang, W. C. Chen, Y. S. Huang, and H. P. Hsu, “Observation of spontaneous ordering in the optoelectronic material GaInNP,” Appl. Phys. Lett., vol.84, pp.1299-1301, 2004. [5.32]Y. K. Su, C. H. Wu, Y. S. Huang, H. P. Hsu, W. C. Chen, S. H. Hsu, and S. J. Chang, “Piezoreflectance and contactless electroreflectance spectra of an optoelectronic material: GaInNP grown on GaAs substrates,” J. Cryst. Growth, vol.264, pp.357-362, 2004. [5.33]K. Uesugi, I. Suemune, T. Hasegawa, T. Akutagawa and T. Nakamura, “Temperature dependence of band gap energies of GaAsN alloys,” Appl. Phys. Lett., vol.76, No.10, pp.1285-1287, 2000. [5.34]M. -A. Pinault and E. Tournie, “On the origin of carrier localization in Ga1–xInxNyAs1–y/GaAs quantum wells,” Appl. Phys. Lett., vol.78, No.11, pp.1562-1564, 2001. [5.35]T. Kanata, M. Nishimoto, H. Nakayama and T. Nishino, “Valence-band splitting in ordered Ga0.5In0.5P studied by temperature-dependent photoluminescence polarization,” Phys. Rev. B, vol.45, No.12, pp.6637-6642, 1992. [5.36]M. C. Delong, D. J. Mowbray, R. A. Hogg, M. S. Skolnick, M. Hopkinson, J. P. R. David, P. C. Taylor, S. R. Kurtz and J. M. Olson, “Photoluminescence, photoluminescence excitation, and resonant Raman spectroscopy of disordered and ordered Ga0.52In0.48P,” J. Appl. Phys., vol.73, No.10, pp.5163-5172, 1993. [5.37]L. Grenouillet, C. Bru-Chevallier, G. Guillot, P. Gilet, P. Duvaut, C. Vannuffel, A. Million and A. Chenevas-Paule, “Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well,” Appl. Phys. Lett., vol.76, No.16, pp.2241-2243, 2000. [5.38]S. Shirakata, M. Kondow and T. Kitatani, “Photoluminescence and photoreflectance of GaInNAs single quantum wells,” Appl. Phys. Lett., vol.79 No.1, pp.54-56, 2001. [5.39]P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Berlin: Springer), 1996. [5.40]M. Kondow, S. Minagawa and S. Satoh, “Raman scattering from AlGaInP,” Appl. Phys. Lett., vol.51, No.24, pp.2001-2003, 1987. [5.41]H. M. Cheong, A. Mascarenhas, P. Ernst and C. Geng, “Effects of spontaneous ordering on Raman spectra of GaInP2,” Phys. Rev. B, vol.56, No.4, pp.1882-1887, 1997. [5.42]G. Y. Rudko, I. A. Buyanova, W. M. Chen, H. P. Xin and C. W. Tu, “Temperature dependence of the GaNxP1–x band gap and effect of band crossover,” Appl. Phys. Lett., vol.81, No.21, pp.3984-3986, 2002.
Chapter 6 [6.1]M. Schubler, V. Krozer, J. Pfeiffer, T. Statzner, W.Y. Lee, H.L. Hartnagel, “AlGaAs/GaAs and GaInP/GaAs HBT for High Temperature Microwave Operation,” Signals, Systems, and Electronics, 1995. ISSSE '95, Proceedings., 1995 URSI International Symposium on, pp.25-27 Oct. 1995. [6.2]J. H. Kim, J. H. Kim, Y. S. Noh and C. S. Park, “Linearised HBT MMIC power amplifier with partially RF coupled active bias circuit for W-CDMA portable terminals applications,” Electron Lett., vol.39, pp.781-783, 2003. [6.3]J. H. Kim, J. H. Kim, Y. S. Noh and C. S. Park, “An InGaP-GaAs HBT MMIC smart power amplifier for W-CDMA mobile handsets,” IEEE J. Solid-St. Circ., vol.38, pp.905-910, 2003. [6.4]J. M. Lee, S. I. Kim, B. G. Min and K. H. Lee, “Fabrication and characteristics of multi-finger InGaP/GaAs power HBTs for high power microwave applications,” J. Korean Phys. Soc., vol.42, pp.S234-S237, 2003. [6.5]H. Ito, S. Yamahata, N. Shigekawa and K. Kurishima, “Heavily carbon doped base InP/InGaAs heterojunction bipolar transistors grown by two-step metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part.1 vol.35, pp.6139-6144, 1996. [6.6]H. Ito and T. Ishibashi, “GaAs/In0.08Ga0.92As double heterojunction bipolar transistors with a lattice-mismatched base,” Jpn. J. Appl. Phys., vol.25, No.5, pp.L421-L424, 1986. [6.7]C.H. Wu, Y.K. Su, S.J. Chang, Y.S. Huang and H.P. Hsu, “Device characteristics of the GaAs-based heterojunction bipolar transistors using InGaAs/GaAsP strain-compensated layer as base material,” Semicond. Sci. Technol., will be presented soon in vol.19, 2004. [6.8]C. Monier, A. G. Baca, P. C. Chang, F. D. Newman, N. Y. Li, S. Z. Sun, E. Armour, H. Q. Hou, “Significant operating voltage reduction on high-speed GaAs-based heterojunction bipolar transistors using a low band gap InGaAsN base layer,” IEEE Transaction on Elect. Dev., vol.49, pp.1329-1335, 2002. [6.9]P. C. Chang, N. Y. Li, A. G. Baca, H. Q. Hou, C. Monier, J. R. Laroche, F. Ren and S. J. Pearton, “Device characteristics of the GaAs/InGaAsN/GaAs p-n-p double heterojunction bipolar transistor,” IEEE Elect. Dev. Lett., vol.22, pp.113-115, 2001. [6.10]P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J. Welty and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP HBTs using graded GaInAsN base regions,” IEEE Elect. Dev. Lett., vol.23, pp.582-584, 2002. [6.11]R. E. Welser, P. M. DeLuca and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-xInxAs1-yNy base layers,” IEEE Elect. Dev. Lett., vol.21, pp.554-556, 2000. [6.12]R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi, C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,” J. Cryst. Growth, vol.195, pp.427-437, 1998. [6.13]Y. Q. Yu, X. Y. Qin, B. B. Huang, J. Y. Wei, H. L. Zhou, J. Q. Pan, W. L. Chen, Y. Qi , X. Y. Zhang and Z. X. Ren, “MOCVD growth of strain-compensated multi-quantum wells light emitting diode,” Vacuum, vol.69, pp.489-493, 2003. [6.14]N. Tansu and L. J. Mawst, “High-performance strain-compensated InGaAs-GaAsP-GaAs (��=1.17 �慆) quantum-well diode lasers,” IEEE Photon. Tech. Lett., vol.13, pp.179-181, 2001. [6.15]H. Asano, M. Wada, T. Fukunaga and T. Hayakawa, “Temperature-insensitive operation of real index guided 1.06 �慆 InGaAs/GaAsP strain-compensated single-quantum-well laser diodes,” Appl. Phys. Lett., vol.74, pp.3090-3092, 1999. [6.16]K. Bacher, S. Massie and M. Seaford, “Molecular beam epitaxy of strain-compensated InGaAs/GaAsP quantum-well intersubband photodetectors,” J. Cryst. Growth, vol.175, pp.977-982, 1997. [6.17]N.J. Ekins-Daukes, K.W.J. Barnham, J.P. Connolly, J.S. Roberts, J.C. Clark, G. Hill and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells,” Appl. Phys. Lett., vol. 75, pp. 4195-4197, 1999. [6.18]X. Yin, F. H. Pollak, L. Pawlowicz, T. O’Neill and M. Hafizi, “Characterization of GaAs/Ga1-xAlxAs heterojunction bipolar transistor structures using photoreflectance,” Appl. Phys. Lett., vol.56, pp.1278-1280, 1990. [6.19]C. J. Lin, Y. S. Huang, N. Y. Li and K. K. Tiong, “Polarized-photoreflectance characterization of an InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor structure,” J. Appl. Phys., vol.90, pp.4565-4569, 2001. [6.20]Materials Aspects of GaAs and InP Based Structure, edit by V. Swaminathan and A.T. Macrander, Prentice Hall, Englewood Cliffs, (New Jersey, 1991), pp.27. [6.21]W. Liu, Fundamentals of III-V Devices, HBTs, MESFETs, and HFETs/HEMTs. New York: Wiley, 1999, pp.143-151. [6.22]D. J. Arent, K. Deneffe, C. V. Hoof, J. D. Boeck and G. Borghs, “Strain effects and band offsets in GaAs/InGaAs strained layered quantum structures,” J. Appl. Phys., vol.66, pp.1739-1747, 1989. [6.23]Patrick Roblin and Hans Rohdin, ”High-speed heterostructure devices: from device concepts to circuit modeling,” Cambridge UK, Cambridge University Press, New York, pp.342, 2002. [6.24]M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys., vol.35, No.2B, pp.1273-1275, 1996. [6.25]S. Sato, Y. Osawa and T. Saitoh, “Room-Temperature Operation of GaInNAs/GaInP Double-Heterostructure Laser Diodes Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol.36, No.5A, pp.2671-75, 1997. [6.26]N. Y. Li, P. C. Chang, A. G. Beca, X. M. Xie, P. R. Sharps and H. Q. Hou, “DC characteristics of MOVPE-grown Npn InGaP/InGaAsN DHBTs,” Electron. Lett., vol.36, No.1, pp.81-83, 2000. [6.27]R. E. Welser, P. M. Deluca, A. C. Wang, and N. Pan, “Low Vbe GaInAsN Base Heterojunction Bipolar Transistors,” IEICE Trans. Electron., vol.E84-C, No.10, pp.1389-1393, 2000. [6.28]R. E. Welser, P. M. Deluca and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-xInxAs1-yNy base layers,” Electron. Dev. Lett., vol.21, No.12, pp.554-556, 2000. [6.29]P. C. Chang, A. G. Beca, N. Y. Li, X. M. Xie, H. Q. Hou and E. Armour, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl. Phys. Lett., vol.76, No.16, pp.2262-2264, 2000. [6.30]R. Bhat, C. Caneau, Lourdes Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,” J. Cryst. Growth, vol.195, No.1-4, pp.427-437, 1998. [6.31]F. Hohnsdorf, J. Koch, C. Agert and W. Stolz, “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy),” J. Cryst. Growth, vol.195, No.1-4, pp.391-396, 1998. [6.32]F. Hohnsdorf, J. Koch, A. Hasse, K. Volz, A. Schaper, W. Stolz, C. Giannini and L. Tapfer, “Structural properties of (GaIn) (NAs)/GaAs MQW structures grown by MOVPE,” Physica E, vol.8, No.3, pp.205-209, 2000. [6.33]H. P. Xin, C. W. Tu and M. Geva, “Annealing behavior of p-type Ga0.892In0.108NxAs1–x (0 X 0.024) grown by gas-source molecular beam epitaxy,” Appl. Phys. Lett., vol.75, No.10, pp.1416-1418, 1999. [6.34]D. J. Friedman, J. F. Geisz, S. R. Kurtz, J. M. Olson and R. Reedy, “Nonlinear dependence of N incorporation on In content in GaInNAs,” J. Cryst. Growth, vol.195, No.1-4, pp.438-443, 1998.
Chapter 7 [7.1]B. Mazhari, G.B. Gao and H. Morkoc, “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State Electron., vol.34, pp.315-321, 1991. [7.2]R.J. Welty, Y.G. Hong, H.P. Xin, K. Mochizuki, C.W. Tu and P.M. Asbeck, “Nitrogen incorporation in GaInP for novel heterojunction bipolar transistors,” IEEE/Cornell conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, pp.33-40, 2000.
|