|
1. International Technology Roadmap for Semiconductors 2005, (Semiconductor Industry Association). 2. R. H. Havemann, “Overview of Process Integration Issue for Low k Dielectrics, Mat. Res. Soc. Symp. Proc. 511, 3 (1998). 3. M. T. Bohr, “ Interconnect Scaling- The Real Limiter to High Performance ULSI, IEDM 95, 241 (1995). 4. International Technology Roadmap for Semiconductors 1997, (Semiconductor Industry Association). 5. J. R. Lloyd, “Electromigration in Integrated Circuit Conductors, J. Phys. 32, R109 (1999). 6. C. Bruynseraede, D. Chiaradia, H. Wang, K. Maex, “EM-induced mass transport at the Cu/barrier interface: a new test structure for rapid assessment at user conditions, IEEE IITC Proc., 21 (2003). 7. E. Ogawa, K. D. Lee, V. A. Blaschke, and P. S. Ho, “Electromigration Reliability Issues in Dual- Damascene Cu Interconnects, IEEE Transactions on Reliability 51, 403 (2001). 8. S. P. Murarka, “Multilevel Interconnections for VLSI and GSI Era, Mater. Sci. and Eng. 19, 87 (1997). 9. K. Holloway,“Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions, J. J. App. Phys. 71, 5433, (1992). 10. International Technology Roadmap for Semiconductors 1999, (Semiconductor Industry Association). 11. International Technology Roadmap for Semiconductors 2001, (Semiconductor Industry Association). 12. International Technology Roadmap for Semiconductors 2003, (Semiconductor Industry Association). 13. L. Peters, “Low-k Dielectrics, Semiconductor International, June, 108(2000). 14. Hong Xiao 著, 羅正中, 張鼎張譯, “半導體製造技術導論, 學銘圖書, 台灣 (2004). 15. N. Sherwani, Algorithms for VLSI physical Design Automation, Kluwer Academic Publishers, 3 rd. Ed. (1999). 16. P. A. Kohl, Low Dielectric Constant Insulators for Future Integrated Circuits and Packages, Annu. Rv. Chem. Biomol. Eng. 2, 379 (2011) 17. S. R. Wilson, C. J. Tracy, and J. L. Freman, Jr., Handbook of Multilevel Metallization for Integrated Circuits, Noyes Publication, Park Ridge, New Jersey, USA, Ch. 1 (1993). 18. D. Shamiryan1, T. Abell, F. Iacopi1, and K. Maxe, “Low-k dielectric Materials, MaterialsToday, January, 34 (2004). 19. S. M. Han and E. S. Aydila, “Reasons for lower dielectric constant of fluorinated SiO2 films, J. Appl. Phys. 83, 2172 (1998). 20. W. S. Yoo, R. Swope, B. Sparks, and D. Mordo, “Comparison of C2F6 and FASi-4 as fluorine dopant sources in plasma enhanced chemical vapor deposited fluorinated silica glass films, J. Mater. Res. 12, 70 (1997). 21. S. P. Kim, S. K. Choi, Y. Park and I. Chung, “Effect of water absorption on the residual stress in fluorinated silicon-oxide thin films fabricated by electron-cyclotron-resonance plasma-enhanced chemical-vapor deposition, Appl. Phys. Lett. 79, 185 (2001). 22. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Interaction between water and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition, J. Vac. Sci. Technol. A 15, 2915 (1997). 23. X. D. Pi, C. P. Burrows, and P. G. Coleman, “Fluorine in Silicon: Diffusion, Trapping, and Precipitation, Phys. Rev. Lett. 90, 155901 (2003). 24. T. Hara, K. Sakamoto, F. Togoh, H. Yang, and D. R. Evans, “Thermal Stability and Interfacial Reaction of Barrier Layers with Low-Dielectric-Constant Fluorinated Carbon Interlayer, Jpn. J. Appl. Phys. 39, L506 (2000). 25. A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W. N. Gill, P. Persans, M. Tomozawa, J. L. Plawsky, and E. Simonyi, Porous silica materials as Low-k Dielectrics for Electronic and Optical Interconnects, Thin Solid Films 513, 398 (2001). 26. S. Yu, T. K. S. Wong, K. Pita, and X. Hu, “Synthesis of organically modified mesoporous silica as a low dielectric constant intermetal dielectric, J. Vac. Sci. Technol. B 20, 2036 (2002). 27. J. Iacoponi, “Status and Future prospects for low k interconnect metrology, International Sematech., March (2003). 28. M. L. O’Neill, A. Lukas, R. Vrtis, J. Vincent, B. Peterson, M. Bitner and E. Karwacki, “Low-k Materials by Design, Semiconductor International, June (2002). 29. Z. Cui, J. M. Madsen, and C. G. Takoudis, “Rapid thermal oxidation of silicon in ozone, J. Appl. Phys. 87, 8181 (2000). 30. A. Kazor and I. W. Boyd, “Ozone-induced rapid low temperature oxidation of silicon, Appl. Phys. Lett. 63, 2517 (1993). 31. G. W. Ray, “Low Dielectric Constant Materials Integration Challenges, Mat. Res. Soc. Symp. Proc. 511, 199 (1998). 32. M. P. Andrews, P. Zhang, S. I. Najafi, K. K. Chao, and N. F. Pasch, “Spinnable and UV-patternable hybrid sol-gel silica glass for direct semiconductor dielectric layer manufacturing, Proc. SPIE Int. Soc. Opt. Eng. 3678, 552 (1999). 33. T. Homma and Y. Murao, “A Spin-on-Glass Film Treatment Technology Using a Fluoroalkoxysilane Vapor at Room Temperature, J. Electrochem. Soc.140, 2046(1993). 34. D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper interconnects with polymer ILDs, Thin Solid Films 308, 523 (1997). 35. A. Rajagopal, C. Gregoire, J. J. Lemaire, J. J. Pireaux, M. R. Baklanov, S. Vanhaelemeersch, K. Maex, and J. J. Waeterloos, “Surface characterization of a low dielectric constant polymer–SiLK polymer, and investigation of its interface with Cu, J. Vac. Sci. Technol. B 17, 2336 (1999). 36. W. Chang, S. M. Jang, C. H. Yu, S. C. Sun, and M. S. Liang, “A manufacturable and reliable low-k inter-metal dielectric using fluorinated oxide (FSG), IEEE IITC Proc. 131 (1999). 37. J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micron CMOS, IEEE VLSI Proc. 59 (1994). 38. T. Fukuda, T. Hosokawa, Y. Nakamura, K. Katoh, and N. Kobayashi, “Highly reliable SiOF film formation by ECR-CVD using SiF2H2, IEEE VLSI Proc. 114 (1996). 39. S. W. Lim, Y. Shimogaki, Y. Nakano, and K. Tada, “Preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 68, 832 (1996). 40. M. J. Shapiro, S. V. Nguyen, T. Matsuda, and D. Dobuzinsky, “CVD of fluorosilicate glass for ULSI applications, Thin Solid Films 270, 503 (1995). 41. A. Grill, “Plasma enhanced chemical vapor deposited SiCOH dielectrics: from low-k to extreme low-k interconnect materials, J. Appl. Phys. 93, 1785 (2003). 42. C. Kittel, Introduction to Solid State Physics, 7th ed. 1, John Wiley and Sons, New York, Ch. 13. (1996). 43. H. Miyajima, R. Katsumata, Y. Nakasaki, and N. Hayasaka, “Water absorption properties of Fluorine-doped SiO2 films using plasma-enhanced chemical vapor deposition, Jpn. J. Appl. Phys. 35, 6217 (1996). 44. G. Y. Lee, D. C. Edelstein, R. Conti, W. Cote, K. S. Low, D. Dobuzinsky, G. Feng, K. Dev, P. Wrschka, P. Shafer, R. Ramachandran, A. Simpson, E. Liniger, E. Simonyi, T. Dalton, T. Spooner, C. Jahnes, E. Kaltalioglu, and A. Grill, Advanced Metallization Conference, San Diego, CA, 3–5 October, (2000). 45. A. Grill and V. Patel, “Novel Low-k Dual-phase Materials Prepared by PECVD, Mater. Res. Soc. Symp. Proc. 612, D2.9 (2000). 46. T. Nakano and T. Ohta, “Relationship Between Chemical Composition and Film Properties of Organic Spin-on Glass, J. Electrochem. Soc. 142, 918 (1995). 47. S. Kawamura, T. Ohta, K. Omote, Y. Ito, R. Suzuki and T. Ohdara, “New Measurement Technique of pore size distribution of porous low-k film, IEEE IITC 195 (2000). 48. J. S. Chou and S. C. Lee, Effect of Porosity on Infrared Absorption Spectra of Silicon Dioxide, J. Appl. Phys. 77, 1805 (1995). 49. A. Grill, V. Patel, “Ultralow-k Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition, Appl. Phys. Lett. 79, 803 (2001). 50. S. K. Jang-Jean, Y. L. Wang, C. P. Liu, W. S. Hwang. W. T. Tseng, C. W. Liu, “In situ fluorine-modified organosilicate glass prepared by plasma enhanced chemical vapor deposition, J. Appl. Phys. 94, 732 (2003). 51. P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, “Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol. A 4, 689 (1986). 52. G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene, Low-temperature Growth of Silicon Dioxide Films, J. Vac. Sci. Technol. B5, 530 (1987). 53. I. Simon, Modern Aspects of the Vitreous Silica (Gordon and Breach, New York, 1975). 54. T.W. Mountsier, J.A. Samuels and R.S. Swope, Mater. Res. Soc. Symp. Proc. 511, 259 (1998). 55. K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma and Z. S. Yanovitskaya, Low dielectric constant materials for microelectronics, J. Appl. Phys. 93, 8793 (2003). 56. D.Shamiryan, K.Weidner, W.D.Gray, M.R.Baklanov, S.Vanhaelemeersch, K.Maex,“Comparafive study of PECVD SiOCH Low-k films obtained at different deposition conditions,Microelectron Eng. 64, 361 (2002). 57. W. L. Wu, W. E. Wallace, E. K. Lin, G. W. Lynn, C. J. Glinka, E. T. Ryan, and H. M. Ho, Properties of nanoporous silica thin films determined by high-resolution x-ray reflectivity and small-angle neutron scattering, J. Appl. Phys. 87, 1193 (2000). 58. D. W. Gidley, W. E. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, “Determination of pore-size distribution in low-dielectric thin films, Appl. Phys. Lett. 76, 1282 (2000). 59. M. P. Petkov, M. H. Weber, K. G. Lynn, and K. P. Rodbell, Probing capped and uncapped mesoporous low-dielectric constant films using positron annihilation lifetime spectroscopy, Appl. Phys. Lett. 77, 2470 (2000). 60. M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry, J. Vac. Sci. Technol. B 18, 1385 (2000). 61. E. Huang, M. F. Toney, W. Volksen, D. Mecerreyes, P. Brock, H.-C. Kim, C. J. Hawker, J. L. Hedrick, V. Y. Lee, T. Magbitang, R. D. Miller and B. Lurio., Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering, Appl. Phys. Lett. 81, 2232 (2002). 62. S. I. Nakao, J. Ushio, T. Ohno, T. Hamada, Y. Kamigaki, M. Kato, K. Yoneda, S. Kondo, and N. Kobayashi, “UV/EB Cure Mechanism for Porous PECVD/SOD Low-k SiCOH Materials, Proc. IEEE Int. Interconnect Technology Conf. 66 (2006). 63. A. Grill and D. A. Neumayer, “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization, J. Appl. Phys. 94, 6697 (2003). 64. M. Petersen, M. T. Schulberg, and L. A. Gochberg, “Density functional theory analysis of infrared modes in carbon-incorporated SiO2, Appl. Phys. Lett. 82, 2041 (2003). 65. Y. H. Kim, M. S. Hwang, H. J. Kim, and Y. Lee, Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, Y. Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films, J. Appl. Phys. 90, 3367 (2001). 66. T. K. S. Wong, B. Liu, B. Narayanan, V. Ligatchev, and R. Kumar, “Investigation of deposition temperature effect on properties of PECVD SiOCH low-k films, Thin Solid Films 462, 156 (2004). 67. S. Lee, J. Yang, S. Yeo, J. Lee, D. Jung, J. H. Boo, H. Kim and H. Chae., “Effect of Annealing Temperature on Dielectric Constant and Bonding Structure of Low-k SiCOH Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition, Jpn. J. Appl. Phys. 46, 536 (2007). 68. E. Martinez, N. Rochat, C. Guedj, C. Licitra, G. Imbert, and Y. Le Friec, “ Influence of electron-beam and ultraviolet treatments on low-k porous dielectrics, J. Appl. Phys. 100, 124106 (2006). 69. Y.L. Cheng, Y.L. Wang, G.J. Hwang, M.L. O’Neill, E.J. Karwacki, P.T. Liu and C.F. Cheng, “Effect of deposition temperature and oxygen flow rate properties of low dielectric constant SiCOH film prepared by plasma enhanced chemical vapor deposition using diethoxymethyl-silane, Surf. Coat. Technol 200, 3134, (2006). 70. A M. Urbanowicz, K. Vanstreels, P. Verdonck, E. V. Besien, T. Christos, D. Shamiryan, S. D. Gendt, and M. R. Baklanov, Effect of UV wavelength on the hardening process of porogen-containing and porogen-free ultralow-k plasma-enhanced chemical vapor deposition dielectrics, J. Vac. Sci. Technol. B29 032201 (2011). 71. C. H. Huang, N. F. Wang, Y. Z. Tsai, C. I. Hung, and M. P. Houng, “Intra-level voltage ramping-up to dielectric breakdown failure on Cu/porous low-k interconnections in 45 nm ULSI generation, Microelectron. Eng. 87 1735 (2010). 72. M. R. Baklanov, L. Zhao, E. V. Besien, and M. Pantouvaki, “Effect of porogen residue on electrical characteristics of ultra low-k materials, Microelectron. Eng. 88 (2011) 990. 73. S. C. Chang, J. M. Shieh, C.C. Hung, B. T. Dai and M. S. Feng, Pattern Effects on Planarization Efficiency of Cu Electropolishing, Jpn. J. Appl. Phys. 41, 7332 (2002). 74. F. H. Giles and J. H. Bartlett, Anodic Behavior of Copper in Phosphoric Acid, J. Electrochem. Soc. 108, 266 (1961). 75. T. Du, J. Chen, D. Cao,“ N,N-Dipropynoxy methyl amine trimethyl phosphonate as corrosion inhibitor for iron in sulfuric acid“, J. Mater. Sci. 36, 3903 (2001). 76. J. M. Bastidas, J. L. Polo, E. Cano, C. L. Torres, “Tributylamine as corrosion inhibitor for mild steel in hydrochloric acid,J. Mater. Sci. 35, 2637 (2000). 77. K. Kojima and C. W. Tobias, Interpretation of the Impedance Properties of the Anode-Surface Film in the Electropolishing of Copper in Phosphoric Acid, J. Electrochem. Soc.120, 1202 (1973). 78. F. H. Giles and J. H. Bartlett, Anodic Behavior of Copper in Phosphoric Acid, J. Electrochem. Soc 108, 266 (1961). 79. E. S. M. Sherif, R. M. Erasmus, J. D. Comins, “Effects of 3-amino-1,2,4-triazole on the inhibition of copper corrosion in acidic chloride solutions, J. Colloid Interface Sci. 311, 144 (2007). 80. L. Larabi , O. Benali , S. M. Mekelleche , and Y. Harek, 2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid Appl. Surf. Sci. 253, 1371 (2006). 81. M. E. Orazem, P. Shukla, and M. A. Membrino, Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements, Electrochim. Acta. 47, 2027 (2002). 82. H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions, Corros. Sci. 45, 867 (2003). 83. F. B. Growcock, R. J. Jasinski, “Time-Resolved Impedance Spectroscopy of Mild Steel in Concentrated Hydrochloric Acid, J. Electrochem. Soc. 136, 2310 (1989).
|