第六章 參考文獻
1. 張存續, 材料與微波之頻率響應與反應特性, 工業材料雜誌, 93年12月216期.
2. R. D. Richtmyer, Dielectric Resonator. Japanese Journal of Applied Physics., 10, 391-398, 1939.
3. A. Okaya, The Rutile Microwave Resonator. Proceeding of the IRE., 48, 1921, 1960.
4. H. M. O. Bryan, J. Thomson, and J. K. Plourde, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 450-453, 1974.
5. S. H. Kim, D. W. Cho, S. Y. Hong, and K. S. Yoon, Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system. Journal of the European Ceramic Society., 23, 2549-2552, 2003.
6. X. M. Chen, Y. H. Sun, and X. H. Zheng, High permittivity and low loss dielectric ceramics in the BaO–La2O3–TiO2–Ta2O5 system. Journal of the European Ceramic Society., 23, 1571-1575, 2003.
7. C. L. Pan, C. L. Shium, and S. J. Huang, Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics. Materials Chemistry and Physics., 78, 111-115, 2003.
8. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975.
9. 李俊遠, GPS微波介電材料與GPS天線設計概念, 電子與材料雜誌第14期, 第 102至108頁, 2002年.
10. S. X. Dai, R. F. Huang, and D. L.Wilcox, Use of Titanates to Achieve a Temperature-Stable Low-Temperature Cofired Ceramic Dielectric for Wireless Applications. Journal of American Ceramic Society., 85, 828–832, 2002.
11. H. Ohsato, S. Nishigaki, and T. Okuda, Superlattice and Dielectric Properties of BaO-R2O3-TiO2 (R=La, Nd and Sm) Microwave Dielectric Compounds. Japanese Journal Applied Physics., 31, 3136-3138, 1992
12. K. Wakino, K. Minai, and H. Tamura, Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators. Journal of the American Ceramic Society., 67, 278-281, 1984.
13. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu, and S. Jinga, Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics. Romanian Journal of Information Science and Technology., 10, 261-268, 2007.
14. M. Takata, and K. Kageyama, Microwave Characteristics of A(B1/23+ B1/25+ )O3 Ceramics. Journal of American Ceramic Society., 72, 1955-1959, 1990.
15. R. R. Tummala, Ceramic and glass–ceramic packaging in the 1990s. Journal of American Ceramic Society., 74, 895–908, 1991.
16. N. Sakamoto, T. Motoki, and H. Sano, U. S. Pat.No. 6233134, 2001.
17. T. Joseph, and M. T. Sebastian, Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M=Ba, Sr, Ca). Materials Letters., 65, 891-893, 2011.
18. T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. Journal of the European Ceramic Society., 26, 2097-2100, 2006.
19. G. K. Choi, J. R. Kim, S. H. Yoon, and K. S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. Journal of the European Ceramic Society., 27, 3063-3067, 2007.
20. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and S. Nomura, BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. Journal of American Ceramic Society., 71, C11-C17, 1988.
21. S. H. Yoon, D.-W. Kim, S.-Y. Cho, and K. S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society., 26, 2051-2054, 2006.
22. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics. Key Engineer Materials., 269, 199–202, 2004.
23. M. E. Song, J. S. Kim, M. R. Joung, and S. Nahm, Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics. Journal of American Ceramic Society., 91, 2747-2750, 2008.
24. Q. L. Zhang, H. Yang, and H. P. Sun, A new microwave ceramic with low-permittivity for LTCC applications. Journal of the European Ceramic Society., 28, 605–609, 2008.
25. H. P. Wang, Q. L. Zhang, H. Yang, and H. P. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceramics International., 34, 1405-1408, 2008.
26. J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, and S.Nahm, Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics. Journal of the European Ceramic Society., 30, 375-379, 2010.
27. J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H, Yoon, and H. J. Kim, Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 Ceramics. Journal of the European Ceramic Society., 23, 2413–2416, 2003.
28. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, Microstructure and Microwave dielectric properties of the Li2CO3-Added Sr2V2O7 Ceramics. Journal of American Ceramic Society., 93, 2132-2135, 2010.
29. R. Lebourgeoisa, S. Dugueyb, J. P. Gannea, and J. M. Heintz, Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites. Journal of Magnetism and Magnetic Materials., 312, 328-330, 2007.
30. S. F. Wang, T. C. K. Yang, Y. R. Wang, and Y. Kuromitsu, Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic. Ceramics International., 27, 157-162, 2001.
31. Q. L. Zhang, H. Yang, and J. X. Tong, Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5. Material Letters., 60, 1188-1191, 2006.
32. M. Ohsahi, H. Ogawa, A. Kan, and E. Tanaka, Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic. Journal of the European Ceramic Society., 25, 2877–2881, 2005.
33. J. S. Kim, J. C. Lee, C. I. Cheon, and C. H. Lee, International Symposium on Research reactor and neutron science., Daejeon, Korea, 2005, 682–685.
34. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. Journal of the European Ceramic Society., 25, 2865–2870, 2005.
35. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, and A. Kan, Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic. Journal of Alloys and Compounds., 424, 388-393, 2006.
36. H. Jantunen, A. Uusima ̈ki, R. Rautioaho, and S. Leppa ̈vuori, Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society., 20, 2331–2336, 2000.
37. N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies. Journal of the European Ceramic Society., 26, 1925–1928, 2006.
38. C. Zhong, Y. Yuan, S. Zhang, Y. Pang, and B. Tang, Low-fired BiNbO4 microwave dielectric ceramics modified by CuV2O6 addition sintered in N2 atmosphere. Journal ceramics silikaty., 54, 103-107, 2010.
39. J. J. Jean, and Y. C. Fang, Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO-B2O3–SiO2 glass–ceramic. Journal of American Ceramic Society., 84, 1354–1360, 2001.
40. C. R. Chang, and J. J. Jean, Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics. Journal of American Ceramic Society., 82, 1725–1732, 1999.
41. P. Hudon, I. H. Jung, and D. R. Baker, Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa. Journal of Petrology., 46, 1859-1880, 2005.
42. G. H. Beall, Design and Properties of Glass-Ceramics. Annual Review Materials Science., 22, 91–119, 1992.
43. 陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程 (第三版),全華圖 書,1996.
44. 吳朗,電子陶瓷-絕緣陶瓷,全欣出版,中華民國 83 年。
45. B. J. Wood, and R. Trigila, Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chemical Geology., 172, 213-223, 2001.
46. 吳伯賢, 透輝石相玻璃陶瓷介電特性與銀電極共燒效應之研究,國立台灣科技大學碩士論文,中華民國106年
47. 劉賾銘 低介電之透輝石相玻璃陶瓷的合成及應用於LTCC氮氣製程下品質因子改善之研究 國立台灣科技大學碩士論文,中華民國100年48. N.H.Nguyen, J.B.Lim,S.Nahm, Effect of Zn/Si Ratio on the Microstructural and Microwave Dielectric properties of Zn2SiO4 Ceramics J.Am.Ceram. Soc Vol.90 [10],pp.3127-3130,(2007).
49. A. Karamanov, M. Pelino “Induced crystallization porosity and properties of sintered diopside and wollastonite glass‐ceramics.” Journal of the European ceramic society, Vol.28, P. 555‐562, (2008)
50. 莊順傑, 二次熱處理與鈦酸鈣添加對透輝石玻璃陶瓷微波介電材料的燒結與特性影響, 國立台灣科技大學碩士論文, 中華民國101年.
51. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida and H.Sugiura, Key Engineering Materials.,“Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics.” 269, 199-202, 2004.
52. E. R. Segnit and A. E. Holland, “The System MgO‐ZnO‐SiO2.” J. Am. Ceram. Soc., 48, 409-413, 1965.
53. X. M. Chen, K. X. Song and C. W. Zheng, “Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system.” Ceramics International., 34, 917-920, 2008.
54. 柳邦凱, 透輝石相玻璃陶瓷添加陶瓷粉體共燒之微波介電特性改善與研究, 國立台灣科技大學碩士論文, 中華民國102年.55. 陳彥明 透輝石相玻璃陶瓷添加陶瓷粉體與銅電極共燒之微波介電特性改善之研究, 國立台灣科技大學碩士論文, 中華民國103年.56. 馮奎智 具低介電新穎透輝石玻璃陶瓷微波材料之發展與特性研究 國立台灣科技大學博士論文, 中華民國102年.57. K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics., 91, 69-86, 1989.
58. K. X. Song, and X. M. Chen, Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Materials Letters., 62, 520-522, 2008.
59. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975.
60. M. T. Sebastian, Dielectric Materials for Microwave Communications. Elsevier Science Technology Publications, Oxford., United Kingdom, 2008.
61. Ahcéne Chaouchi1, Sadia Kennour1 et al., Low temperature sintered ZnTiO3 dielectric ceramics with temperature coefficient of dielectric constant near zero, Processing and Application of Ceramics 4 [2], 75–80, 2010.
62. S. Takeoka , Y. Mizuno, “Effect of Internal Electrode Materials in Multilayer Ceramic Capacitors on Electrical Properties.”, Japanese Journal of Applied Physics ., 50, 2011.
63. 李宜芝, BaO-B2O3-SiO2 玻璃添加ZnO對Ba-Ti-O微波介電陶瓷低溫製程微觀結構與介電特性之影響, 國立台灣科技大學碩士論文, 中華民國 98年.64. 張俊堯, 透輝石相玻璃陶瓷低溫共燒擴散效應與高頻天線特性探討,國立台灣科技大學碩士論文,中華民國104年