跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡家榕
研究生(外文):Jia-Rung Hu
論文名稱:dkey參與內質網壓力中去除由人類uORFchop所主導的轉譯抑制
論文名稱(外文):dkey Plays Roles on Repressing the Human uORFchop- mediated Translational Inhibition during ER Stress
指導教授:蔡懷楨蔡懷楨引用關係
口試委員:呂勝春鄭子豪洪瑞祥
口試日期:2015-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:內質網壓力CHOP蛋白質轉譯後調控基因調控
外文關鍵詞:CHOPER stresseIF2αpost-translation regulationgene regulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在細胞受到ER stress時,C/EBP homologous protein (CHOP) 對於細胞存活與凋亡扮演重要的角色,而chop mRNA的轉譯主要受到其5’UTR上的upstream open reading frame (uORFchop) 所抑制。當細胞受到ER stress時,chop mRNA會因為uORFchop抑制功能喪失而被轉譯出來。但對於ER stress造成uORFchop喪失轉譯抑制能力的分子機制仍不清楚。本實驗室利用由CMV promoter驅動下游帶有人類uORFchop (huORFchop)及綠色螢光蛋白(green fluorescent protein,GFP) cDNA之基因構築的轉殖斑馬魚品系huORFZ當材料,因為當它受到ER stress時,便會引發huORFchop功能喪失而促使GFP表現。我們利用雷射顯微切割器(Laser microdissection) 的方式收集逆境後表現於huORFZ的GFP-(+) 細胞,接著以GFP-(-) 細胞作為比較基礎,建立microarray資料庫。當中,我們篩選到一個A值為7.2 (A值大於7表示可信度高) 及M值為2.4 (M值大於0表示強度高)的dkey基因。從全胚胎原位雜交染色(WISH)觀察斑馬魚96 hpf胚胎,發現內生性dkey mRNA在腦部與脊隨表現且經過40℃熱處理後會增量,表示dkey mRNA表現量的變化與microarray的結果吻合。為了進一步證實dkey在huORFchop擔任轉譯抑制的角色,首先在in vivo斑馬魚胚胎中注射huORFchop-luciferase及dkey DNA,發現luciferase activity會上升,表示dkey會壓制huORFchop的轉譯抑制能力。接著,為了證實chop mRNA轉譯會受dkey的影響,利用西方浸漬法得知dkey造成huORFchop轉譯抑制能力的喪失是透過eIF2α磷酸化的上升而使CHOP蛋白質的表現量增加。進一步在in vitro中同樣進行luciferase assay及西方浸漬法也得到相同的結果。接著在in vitro中證實非磷酸化eIF2α(eIF2α /S51A) 會造成dkey降低對於huORFchop轉譯抑制喪失的能力;反之持續磷酸化的eIF2α(eIF2α /S51D) 則會促進dkey對於huORFchop轉譯抑制喪失的能力,確定dkey對於huORFchop轉譯抑制喪失的能力受到eIF2α磷酸化狀態所影響。我們也透過免疫共沉澱法(Co-immunoprecipitation) 得知dkey能與eIF2α蛋白質結合。為了確定dkey對於huORFchop轉譯抑制的喪失是透過其endoribonucleases的能力,我們同時轉染dkey DNA及huORFchop-GFP DNA到HEK293T細胞株,藉由北方浸漬法的方式並且以GFP-probe偵測會造成huORFchop-GFP RNA進行RNA的切割。綜合上述實驗結果,本研究發現磷酸化eIF2α造成dkey對於huORFchop喪失轉譯抑制的能力使得CHOP蛋白質的表現量增加,另外也證實DKEY蛋白質能與eIF2α蛋白質結合。所以,我們認為dkey可能透過與eIF2α的結合而找到huORFchop的位置,然後以endoribonucleases的能力,破壞huORFchop的結構促使其轉譯抑制的喪失,而造成CHOP蛋白質的表現。

In response of endoplasmic reticulum (ER) stress, C/EBP homologous protein (CHOP) is critically involved in either cell survival or apoptosis. It has been reported that the 5’UTR of chop mRNA contains an upstream open reading frame (uORFchop) which inhibits its translation. During ER stress, the uORFchop–mediated translational inhibition is abolished, resulting in generating CHOP protein. However, underlying molecular mechanisms of uORFchop -mediated translational inhibition is not fully understood. To answer this issue, we employed the zebrafish transgenic line huORFZ, which harbors the GFP reporter fused with the human uORFchop (huORFchop) and driven by a cytomegalovirus promoter. Interestingly, GFP was expressed only when huORFZ embryos were treated with ER stresses. The number of GFP(+) cells in the brain of huORFZ embryos was dependent on the duration of heat-treatment. Taking advantage of Laser Microdissection, we collected the neuronal cells expressing GFP from the brain of heat-shocked huORFZ embryos to perform microarray analysis using GFP-negative neuronal cells as a background. Among the putative genes, dkey was selected for further study because it was one of the most up-regulated genes presented in GFP(+) cells, whose A value was 7.2 (A value greater than 7 indicates high reliability) and M value was 2.4 (M value greater than 0 indicates high intensity). Whole mount in situ hybridization demonstrated that dkey transcripts were expressed in the brain and spinal cord of embryos at 96 hpf. The expressional level of dkey was greatly increased when embryos were treated with 40℃,which was corresponding with the results obtained from microarray. To confirm whether dkey plays role on the huORFchop-mediated translational inhibition, we injected a DNA construct of huORFchop-luciferase and a DNA fragment of dkey into zebrafish embryos. Results showed that the luciferase activity of the injected embryos was increased, suggesting that overexpression of dkey did suppress the huORFchop –translational inhibition in vivo. Furthermore, Western blot analysis revealed that overexpressive dkey in embryos increased the protein levels of phosphorylated eIF2α (p-eIF2α) and CHOP. Results obtained from in vitro studies of luciferase assay and Western blot analysis were correspondent with those of in vivo study. We also demonstrated that increase of the non-phosphorylated mutant of eIF2α (eIF2α/S51A) in cells reduced the suppressive capability of dkey on the huORFchop - translational inhibition in vitro. In contrast, increase of the phosphorylated eIF2α (eIF2α/S51D) enhanced the suppressive capability of dkey on the huORFchop -mediated translational inhibition. Furthermore, co-immunoprecipitation revealed that Dkey protein was able to interact with eIF2α. Thus, we concluded that eIF2α and Dkey interact to control the huORFchop translational inhibition. Interestingly, Northern blot exhibited that Dkey could digest the huORFchop -tagged mRNA, suggesting that the endoribonucleases activity of Dkey may function in huORFchop -mediated translational inhibition. Collectively, we suggested that (1) Dkey is effectively involved in the huORFchop -mediated translational inhibition through the increase of p-eIF2α; and (2) Dkey may combine with eIF2α to locate the binding site of huORFchop, resulting in altering the huORFchop structure through its endoribonucleases ability, which in turn, the huORFchop –mediated translational inhibition is abolished, and CHOP is translated during ER stress.

中文摘要………………………………………………………………………………1
英文摘要………………………………………………………………………………3
文獻回顧………………………………………………………………………………5
前言……………………………………………………………………………………18
實驗材料與方法………………………………………………………………………20
結果……………………………………………………………………………………29
討論……………………………………………………………………………………40
參考文獻………………………………………………………………………………47
圖說……………………………………………………………………………………54
附錄……………………………………………………………………………………65



黃薇臻 (2013) 碩士論文:利用有對熱逆境敏銳反應的腦細胞來探討轉譯抑制的機制。台灣大學分子與細胞生物研究所

Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell., 27:53-66.

Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace AJ Jr, Tkachuk DC. (1999) Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol., 19:7050-60.

Afonyushkin T, Vecerek B, Moll I, Bläsi U, Kaberdin VR. (2005) Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res., 33:1678-89.

Araki E, Oyadomari S, Mori M. (2003) Endoplasmic reticulum stress and diabetes mellitus. Intern Med., 42:7-14.

B''chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A. (2013) The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 41:7683-99.

Braakman I, Bulleid NJ. (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem., 80:71-99.

Caffarelli E, Maggi L, Fatica A, Jiricny J, Bozzoni I. (1997) A novel Mn++-dependent ribonuclease that functions in U16 SnoRNA processing in X. laevis. Biochem Biophys Res Commun., 233:514-7.

Calvo SE, Pagliarini DJ, Mootha VK. (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A., 106:7507-12.

Chen Y, Brandizzi F. (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol., 23:547-55.

Chen YJ, Tan BC, Cheng YY, Chen JS, Lee SC. (2010) Differential regulation of CHOP translation by phosphorylated eIF4E under stress conditions. Nucleic Acids Res., 38:764-77.

Cybulsky AV. (2010) Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int., 77:187-93.

Daniels R, Kurowski B, Johnson AE, Hebert DN. (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell., 11:79-90.

Deana A, Belasco JG. (2005) Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev., 19:2526-33.

Gioia U, Laneve P, Dlakic M, Arceci M, Bozzoni I, Caffarelli E. (2005) Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis. J Biol Chem., 280:18996-9002.

Guan BJ, Krokowski D, Majumder M, Schmotzer CL, Kimball SR, Merrick WC, Koromilas AE, Hatzoglou M. (2014) Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. J Biol Chem., 289:12593-611.

Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ. (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol., 15:481-90.
Hebert DN, Molinari M. (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev., 87:1377-408.

Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ. (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science. 312:572-6.

Hetz C, Martinon F, Rodriguez D, Glimcher LH. (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev., 91:1219-43.

Hu P, Han Z, Couvillon AD, Exton JH. (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem., 279:49420-9.

Jackson RJ, Hellen CU, Pestova TV. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol., 11:113-27.

Jakob RP, Schmid FX. (2009) Molecular determinants of a native-state prolyl isomerization. J Mol Biol., 387:1017-31.

Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D, Fafournoux P. (2001) Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5''UTR. Nucleic Acids Res., 29:4341-51.

Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. (2012) Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep., 2:799.

Laneve P, Altieri F, Fiori ME, Scaloni A, Bozzoni I, Caffarelli E. (2003) Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J Biol Chem., 278:13026-32.
Laneve P, Gioia U, Ragno R, Altieri F, Di Franco C, Santini T, Arceci M, Bozzoni I, Caffarelli E. (2008) The tumor marker human placental protein 11 is an endoribonuclease. J Biol Chem., 283:34712-9.

Lee AH, Iwakoshi NN, Glimcher LH. (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol., 23:7448-59.

Lee HC, Chen YJ, Liu YW, Lin KY, Chen SW, Lin CY, Lu YC, Hsu PC, Lee SC, Tsai HJ. (2011) Transgenic zebrafish model to study translational control mediated by upstream open reading frame of human chop gene. Nucleic Acids Res., 39:139.

Lee HC, Lu PN, Huang HL, Chu C, Li HP, Tsai HJ. (2014) Zebrafish transgenic line huORFZ is an effective living bioindicator for detecting environmental toxicants. PLoS One, 9:e90160.

Lindholm D, Wootz H, Korhonen L. (2006) ER stress and neurodegenerative diseases. Cell Death Differ., 13:385-92.

Malhotra JD, Kaufman RJ. (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal, 9:2277-93.

Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci., 23:222-9.

Ma Y, Hendershot LM. (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat., 28:51-65.

Michalak M, Robert Parker JM, Opas M. (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium., 32:269-78.

Minamino T, Komuro I, Kitakaze M. (2010) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res., 107:1071-82.
Novoa I, Zeng H, Harding HP, Ron D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol., 153:1011-22.

Palam LR, Baird TD, Wek RC. (2011) Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem., 286:10939-49.

Ron D, Habener JF. (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev., 6:439-53.

Schwarz DS, Blower MD. (2014) The calcium-dependent ribonuclease XendoU promotes ER network formation through local RNA degradation. J Cell Biol., 207:41-57.

Shang J, Lehrman MA. (2004) Discordance of UPR signaling by ATF6 and Ire1p-XBP1 with levels of target transcripts. Biochem Biophys Res Commun., 317:390-6.

Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG, Wu C, Yates JR 3rd, Su AI, Kelly JW, Wiseman RL. (2013) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep., 3:1279-92.

Soldà T, Garbi N, Hämmerling GJ, Molinari M. (2006) Consequences of ERp57 deletion on oxidative folding of obligate and facultative clients of the calnexin cycle. J Biol Chem., 281:6219-26.

Szegezdi E, Fitzgerald U, Samali A. (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci., 1010:186-94.

Szegezdi E, Logue SE, Gorman AM, Samali A. (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep., 7:880-5.

Tay KH, Luan Q, Croft A, Jiang CC, Jin L, Zhang XD, Tseng HY. (2014) Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell Signal., 26:287-94.

Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D. (1996) Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol., 16:1479-89.

Vattem KM, Wek RC. (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A., 101:11269-74.

Wang L, Wessler SR. (2001) Role of mRNA secondary structure in translational repression of the maize transcriptional activator Lc(1,2). Plant Physiol., 125:1380-7.

Wang M, Kaufman RJ. (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer., 14:581-97.

Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J., 1998 Oct 1;17:5708-17.

Walter P, Ron D. (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science, 334:1081-6.

Yamasaki S, Anderson P. (2008) Reprogramming mRNA translation during stress. Curr Opin Cell Biol., 20:222-6.

Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, Katze MG. (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci U S A., 99:15920-5.

Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell., 6:1355-64.

Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev., 12:982-95.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top