|  | 
1.Sharifi, E., A. Salimi, and E. Shams, DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine. Bioelectrochemistry, 2012. 86: p. 9-21.2.Dong, Y. and J. Zheng, A nonenzymatic L-cysteine sensor based on SnO2-MWCNTs nanocomposites. Journal of Molecular Liquid, 2014. 196: p. 280-284.
 3.Xu, F., F. Wang, D. Yang, Y. Gao, and H. Li, Electrochemical sensing platform for L-CySH based on nearly uniform Au nanoparticles decorated graphene nanosheets. Materials Science and Engineering C, 2014. 38: p. 292-298.
 4.Pandey, P.C., A.K. Pandey, and D.S. Chauhan, Nanocomposite of Prussian blue based sensor for l-cysteine: Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochimica Acta, 2012. 74: p. 23-31.
 5.Pelletier, S. and C.A. Lucy, HPLC simultaneous analysis of thiols and disulfides: on-line reduction and indirect fluorescence detection without derivatization. Analyst, 2004. 129(8): p. 2004.
 6.Lee, C.-J. and J. Yang, α-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids. Analytical Biochemistry, 2006. 359(1): p. 124-131.
 7.Zhao, C., J. Zhang, and J. Song, Determination of l-cysteine in amino acid mixture and human urine by flow-Injection analysis with a biamperometric detector. Analytical Biochemistry, 2001. 297(2): p. 170-176.
 8.Chiesl, T.N., W.K. Chu, A.M. Stockton, X. Amashukeli, F. Grunthaner, and R.A. Mathies, Enhanced amine and amino acid analysis using pacific blue and the mars organic analyzer microchip capillary electrophoresis system. Analytical Chemistry, 2009. 81(7): p. 2537-2544.
 9.Wang, X., C. Luo, L. Li, and H. Duan, Highly selective and sensitive electrochemical sensor for L-cysteine detection based on graphene oxide/multiwalled carbon nanotube/manganese dioxide/gold nanoparticles composite. Journal of Electroanalytical Chemistry, 2015. 757: p. 100-106.
 10.Wu, L., J. Li, and H.-M. Zhang, One step fabrication of Au nanoparticles-Ni-Al layered double hydroxide composite film for the determination of L-Cysteine. Electroanalysis, 2015. 27: p. 1195-1201.
 11.Bucur, M.P., B. Bucur, C.M. Radulescu, O.I. Covaci, and G.L. Radu, L-cysteine determination based on tyrosinase amperometric biosensors without interferences from thiolic compounds. Analytical Letters, 2010. 43(15): p. 2440-2455.
 12.Santhiago, M. and I.C. Vieira, L-Cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryzae. Sensors and Actuators B, 2007. 128(1): p. 279-285.
 13.Hassana, S.S.M., A.F. El-Baz, and H.S.M. Abd-Rabboh, A novel potentiometric biosensor for selective l-cysteine determination using l-cysteine-desulfhydrase producing Trichosporon jirovecii yeast cells coupled with sulfide electrode. Analytica Chimica Acta, 2007. 602: p. 108-113.
 14.Harfield, J.C., C. Batchelor-McAuley, and R.G. Compton, Electrochemical determination of glutathione: a review. Analyst, 2012. 137: p. 2285-2296.
 15.Sattarahmady, N. and H. Heli, An electrocatalytic transducer for l-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core-shell structure. Analytical Biochemistry, 2011. 409(1): p. 74-80.
 16.Hallaj, R., A. Salimi, K. Akhtari, S. Soltanian, and H. Mamkhezri, Electrodeposition of guanine oxidation product onto zinc oxide nanoparticles: Application to nanomolar detection of l-cysteine. Sensors and Actuators B, 2009. 135(2): p. 632-641.
 17.Bai, Y.-H., J.-J. Xu, and H.-Y. Chen, Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosensors and Bioelectronics, 2009. 24: p. 2985-2990.
 18.Zhou, M., J. Ding, L.-p. Guo, and Q.-k. Shang, Electrochemical behavior of l-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry, 2007. 79: p. 5328-5335.
 19.Corrêa, C.C., S.A.V. Jannuzzi, M. Santhiago, R.A. Timm, A.L.B. Formiga, and L.T. Kubota, Modified electrode using multi-walled carbon nanotubes and ametallopolymer for amperometric detection of l-cysteine. Electrochimica Acta, 2013. 113: p. 332-339.
 20.Wang, L., SimonTricard, P. Yue, J. Zhao, J. Fang, and W. Shen, Polypyrrole and graphene quantumdots @Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosensors andBioelectronics, 2016. 77: p. 1112-1118.
 21.Xu, S., H. Li, L. Wang, Q. Yue, S. Sixiu, and J. Liu, One-pot synthesis of Ag@Cu yolk-shell nanostructures and their application as non-enzymatic glucose biosensors. CrystEngComm, 2014. 16(38): p. 9075-9082.
 22.Ren, X., X. Meng, D. Chen, F. Tang, and J. Jiao, Using silver nanoparticle to enhance current response of biosensor. Biosensors and Bioelectronics, 2005. 21(3): p. 433-437.
 23.Li, H., C.-Y. Guo, and C.-L. Xu, A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu–Ag superstructures. Biosensors and Bioelectronics, 2015. 63: p. 339-346.
 24.Lowinsohn, D., E.M. Richter, L. Angnes, and M. Bertotti, Disposable gold electrodes with reproducible area using recordable CDs and toner masks. Electroanalysis, 2005. 18(1): p. 89-94.
 25.Granato, F., M. Scampicchio, A. Bianco, S. Mannino, C. Bertarelli, and G. Zerbia, Disposable electrospun electrodes based on conducting nanofibers. Electroanalysis, 2008. 20(12): p. 1374-1377.
 26.Priano, G., G. Gonzalez, M. Gunther, and F. Battaglini, Disposable gold electrode array for simultaneous electrochemical studies. Electroanalysis, 2008. 20(1): p. 91-97.
 27.Ge, S., M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song, and S. Yu, Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for l-cysteine analysis. Biosensors and Bioelectronics, 2012. 31: p. 49-54.
 28.Ruiz-Diaz, J.J.J., A.A.J. Torriero, E. Salinas, E.J. Marchevsky, M.I. Sanz, and J. Raba, Enzymatic rotating biosensor for cysteine and glutathione determination in a FIA system. Talanta, 2006. 68: p. 1343-1352.
 29.Carvalho, R.C., A. Mandil, K.P. Prathish, A. Amine, and C.M.A. Brett, Carbon nanotube, carbon black and copper nanoparticle modified screen printed electrodes for amino acid determination. Electroanalysis, 2013. 25(4): p. 903-913.
 30.Prasad, K.S., G. Muthuraman, and J.-M. Zen, Direct electrocatalytic oxxidation of cysteine and cystine based on nafion/lead oxide-manganese oxide combined catalyst. Electroanalysis, 2008. 20(11): p. 1167-1174.
 31.Bakthavatsalam, R., S. Ghosh, R.K. Biswas, A. Saxena, A. Raja, M.O. Thotiyl, S. Wadhai, A.G. Banpurkarc, and J. Kundu, Solution chemistry-based nano-structuring of copper dendrites for efficient use in catalysis and superhydrophobic surfaces. RSC Advances, 2016. 6: p. 8416-8430.
 32.Fei, S., J. Chen, S. Yao, G. Deng, D. He, and Y. Kuang, Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Analytical Biochemistry, 2005. 339(1): p. 29-35.
 33.Silva, F.d.A.d.S., M.G.A. Silva, P.R. Lima, M.R. Meneghetti, L. Kubota, and M.O.F. Goulart, A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosensors and Bioelectronics, 2013. 50: p. 202-209.
 34.Amarnath, K., V. Amarnath, K. Amarnath, H.L. Valentine, and W.M. Valentine, A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. Talanta, 2003. 60: p. 1229-1238.
 35.Wang, W., O. Rusin, X. Xu, K.K. Kim, J.O. Escobedo, S.O. Fakayode, K.A. Fletcher, M. Lowry, C.M. Schowalter, C.M. Lawrence, F.R. Fronczek, I.M. Warner, and R.M. Strongin, Detection of homocysteine and cysteine. Journal of American Chemical Society, 2005. 127: p. 15949-15958.
 36.Prasad, B.B. and R. Singh, A new micro-contact imprinted l-cysteine sensor based on sol-gel decorated graphite/multiwalled carbon nanotubes/goldnanoparticles composite modified sandpaper electrode. Sensors and Actuators B, 2015. 212: p. 155-164.
 37.Ahmad, M., C. Pan, and J. Zhu, Electrochemical determination of L-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. Journal of Materials Chemistry, 2010. 20: p. 7169-7174.
 38.Wu, W., G. Goldstein, C. Adams, R.H. Matthews, and N. Ercal, Separation and quantification of N-acetyl-l-cysteine and N-acetyl-cysteine-amide by HPLC with fluorescence detection. Biomedical Chromatography, 2006. 20(5): p. 415-422.
 39.Jung, H.S., J.H. Han, T. Pradhan, S. Kim, S.W. Lee, J.L. Sessler, T.W. Kim, C. Kang, and J.S. Kim, A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials, 2012. 33: p. 945-953.
 40.Li, H., J. Fan, J. Wang, M. Tian, J. Du, S. Sun, P. Sun, and X. Peng, A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chemical Communications, 2009(39): p. 5904-5906.
 41.Carlucci, F. and A. Tabucchi, Capillary electrophoresis in the evaluation of aminothiols in body fluids. Journal of Chromatography B, 2009. 877(28): p. 3347-3357.
 42.Jellum, E., A.K. Thorsrud, and E. Time, Capillary electrophoresis for diagnosis and studies of human disease, particularly metabolic disorders. 1991. 559(1-2): p. 455-465.
 43.Deáková, Z., Z. Ďuračková, D.W. Armstrong, and J. Lehotay, Two-dimensional high performance liquid chromatography for determination of homocysteine, methionine and cysteine enantiomers in human serum. Journal of Chromatography A, 2015. 1408: p. 118-124.
 44.Cevasco, G., A.M. Pi˛atek, C. Scapolla, and S. Thea, An improved method for simultaneous analysis of aminothiols in human plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 2010. 1217: p. 2158-2162.
 45.Liu, J., Y.-Q. Sun, Y. Huo, H. Zhang, L. Wang, P. Zhang, Dan Song, Y. Shi, and W. Guo, Simultaneous fluorescence sensing of cys and GSH from different emission channels. Journal of American Chemical Society, 2013. 136: p. 574-577.
 46.Yuan, X., Y. Tay, X. Dou, Z. Luo, D.T. Leong, and J. Xie, Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Analytical Chemistry, 2013. 85: p. 1913-1919.
 47.Du, J., Y. Li, and J. Lu, Investigation on the chemiluminescence reaction of luminol-H2O2-S2-/R-SH system. Analytica Chimica Acta, 2001. 448(1-2): p. 79-83.
 48.Kamidate, T., T. Tani, and H. Watanabe, Resolution of amino thiols in time-resolved luminol chemiluminescence catalyzed by peroxidases. Analytical Sciences, 1998. 14(14): p. 725-729.
 49.Viñas, P., I.L. Garcia, and J.A.M. Gil, Determination of thiol-containing drugs by chemiluminescence—flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis, 1993. 11(1): p. 15-20.
 50.Yang, N., H. Song, X. Wan, X. Fan, Y. Su, and Y. Lv, A metal (Co)–organic framework-based chemiluminescence system for selective detection of L-cysteine. Analyst, 2015. 140: p. 2656-2663.
 51.Ivanov, A.V., E.D. Virus, B.P. Luzyanin, and A.A. Kubatiev, Capillary electrophoresis coupled with 1,1'-thiocarbonyldiimidazole derivatization for the rapid detection of total homocysteine and cysteine in human plasma. Journal of Chromatography B, 2015. 1004: p. 30-36.
 52.Salimi, A. and R. Hallaj, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione. Talanta, 2005. 66: p. 967-975.
 53.Wang, Y., W. Peng, L. Liu, F. Gao, and M. Li, The electrochemical determination of l-cysteine at a Ce-doped Mg–Al layered double hydroxide modified glassy carbon electrode. Electrochimica Acta, 2012. 70: p. 193-198.
 54.Wang, A., L. Zhang, S. Zhang, and Y. Fang, Determination of thiols following their separation by CZE with amperometric detection at a carbon electrode. Journal of Pharmaceutical and Biomedical Analysis, 2000. 23: p. 429-436.
 55.Hosseini, H., H. Ahmar, A. Dehghani, AkbarBagheri, A. Tadjarodi, and A.R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosensors and Bioelectronics, 2013. 42: p. 426-429.
 56.Spãtaru, N., B.V. Sarada, E. Popa, D.A. Tryk, and A. Fujishima, Voltammetric determination of l-cysteine at conductive diamond electrodes. Analytical Chemistry, 2001. 73(3): p. 514-519.
 57.Zen, J.-M., A.S. Kumar, and J.-C. Chen, Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode. Analytical Chemistry, 2001. 73(6): p. 1169-1175.
 58.Mincheva, R., O. Stoilova, H. Penchev, T. Ruskov, I. Spirov, N. Manolovaa, and I. Rashkov, Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning. European Polymer Journal, 2008. 44(3): p. 615-627.
 59.Solanki, P.R., A. Kaushik, V.V. Agrawal, and B.D. Malhotra, Nanostructured metal oxide-based biosensors. NPG Asia Materials, 2011. 3(1): p. 17-24.
 60.Grieshaber, D., R. MacKenzie, J. Voros, and E. Reimhult, Electrochemical biosensors - sensor principles and architectures. Sensors, 2008. 8: p. 1400-1458.
 61.Tîlmaciu, C.-M. and M.C. Morris, Carbon nanotube biosensors. Frotiers in Chemistry, 2015. 35(59): p. 1-29.
 62.Ricci, F. and G. Palleschi, Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosensors and Bioelectronics, 2005. 21: p. 389-407.
 63.Liu, X., L. Luo, Y. Ding, Z. Kang, and D. Ye, Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry, 2012. 86: p. 38-45.
 64.Zare, H.R., F. Jahangiri-Dehaghani, Z. Shekari, and A. Benvidi, Electrocatalytic simultaneous determination of ascorbic acid, uric acid and l-cysteine in real samples using quercetin silver nanoparticles–graphene nanosheets modified glassy carbon electrode. Applied Surface Science, 2016. 375: p. 169-178.
 65.Salimi, A. and M. Roushani, Electrocatalytic oxidation of sulfur containing amino acids at renewable Ni‐powder doped carbon ceramic electrode: Application to amperometric detection l‐cystine, l‐cysteine and l‐methionine. Electroanalysis, 2006. 18(21): p. 2129-2136.
 66.Dong, Y., L. Pei, X. Chu, W. Zhang, and Q. Zhang, Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochimica Acta 55 (2010) 5135–5141, 2010. 55: p. 5135-5141.
 67.Murugavelu, M. and B. Karthikeyan, Study of Ag-Pd bimetallic nanoparticles modified glassy carbon electrode for detection of l-cysteine. Superlattices and Microstructures, 2014. 75: p. 916-926.
 68.Majidi, M.R., K. Asadpour-Zeynali, and B. Hafezi, Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure. Microchimica Acta, 2010. 169: p. 283-288.
 69.Du, D., M. Wang, Y. Qin, and Y. Lin, One-step electrochemical deposition of Prussian Blue–multiwalled carbon nanotube nanocomposite thin-film: preparation, characterization and evaluation for H2O2 sensing. Journal of Materials Chemistry, 2010. 20: p. 1532-1537.
 70.Ricci, F., F. Arduini, A. Amine, D. Moscone, and G. Palleschi, Characterisation of Prussian blue modified screen-printed electrodes for thiol detection. Journal of Electroanalytical Chemistry, 2004. 563: p. 229-237.
 71.Itaya, K., I. Uchida, and V.D. Neff, Electrochemistry of polynuclear transition metal cyanides: Prussian Blue and its analogues. Accounts of Chemical Research, 1986. 19: p. 162-168.
 72.Ghaderi, S. and M.A. Mehrgardi, Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide. Bioelectrochemistry, 2014. 98: p. 64-69.
 73.Petkova, G.A., . Záruba, P. Žvátora, and V. Král, Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Research Letters, 2012. 7: p. 287.
 74.Luo, X., A. Morrin, A.J. Killard, and M.R. Smyth, Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 2006. 18(4): p. 319-326.
 75.Tee, S.Y., C.P. Teng, and E. Ye, Metal nanostructures for non-enzymatic glucose sensing. Materials Science and Engineering C, 2016.
 76.Zen, J.-M., C.-T. Hsu, A.S. Kumar, H.-J. Lyuu, and K.-Y. Lin, Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst, 2004. 129: p. 841-845.
 77.Luo, P., F. Zhang, and R.P. Baldwin, Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Analytical Chemistry, 1991. 63: p. 1702-1707.
 78.Mondin, G., M.R. Lohe, F.M. Wisser, J. Grothe, N. Mohamed-Noriega, A. Leifert, S. Dörfler, A. Bachmatiuk, M.H. Rümmeli, and S. Kaskel, Electroless copper deposition on (3-mercaptopropyl)triethoxysilane-coated silica and alumina nanoparticles. Electrochimica Acta, 2013. 114: p. 521-526.
 79.Zabetakis, D. and W.J. Dressick, Selective electroless metallization of patterned polymeric films for lithography applications. ACS Applied Materials and Interfaces, 2009. 1(1): p. 4-25.
 80.Djokic, S.S., Electroless Deposition of Metals and Alloys, in Modern Aspects of Electrochemistry, B.E. Conway and R.E. White, Editors. 2002, Springer US: New York. p. 51-133.
 81.Kim, E., N.S. Arul, L. Yang, and J.I. Han, Electroless plating of copper nanoparticles on PET fiber for non-enzymatic electrochemical detection of H2O2. RSC Advances, 2015. 5: p. 76729-76732.
 82.Cheng, D.H., W.Y. Xu, Z.Y. Zhang, and Z.H. Yiao, Electroless copper plating using hypophosphite as reducing agent. Metal Finishing, 1997. 95(1): p. 36-37.
 83.Wang, P.-C., C.-P. Chang, M.-J. Youh, Y.-M. Liu, C.-M. Chu, and M.-D. Ger, The preparation of pH-sensitive Pd catalyst ink for selective electroless deposition of copper on a flexible PET substrate. Journal of the Taiwan Institute of Chemical Engineers, 2016. 60: p. 555-563.
 84.Prissanaroon, W., N. Brack, P.J. Pigram, P. Hale, P. Kappen, and J. Liesegang, Fabrication of patterned polypyrrole on fluoropolymers for pH sensing applications. Synthetic Metals, 2005. 154: p. 105-108.
 85.Rahman, H.H.A., A.H.E. Moustafa, and S.M.K.A. Magid, High rate copper electrodeposition in the presence of inorganic salts. International Journal of Electrochemcal Science2012. 7: p. 6959-6975.
 86.Yokoi, M., Copper electrodeposition for nanofabrication of electronics devices, in Nanostructure Science and Technology, K. Kondo, R.N. Akolkar, D.P. Barkey, and M. Yokoi, Editors. 2014, Springer US: New York. p. 3-10.
 87.Brett, C.M.A. and A.M.O. Brett, Electrochemistry in industry, in Electrochemistry, principles, methods, and applications, J. Heinze, Editor. 1994, Oxford University Press: Oxford. p. 343.
 88.Deng, Y., H. Ling, X. Feng, T. Hang, and M. Li, Electrodeposition and characterization of copper nanocone structures. CrystEngComm, 2015. 17: p. 868-876.
 89.Zhou, X.J., A.J. Harmer, N.F. Heinig, and K.T. Leung, Parametric study on electrochemical deposition of copper nanoparticles on an ultrathin polypyrrole film deposited on a gold film electrode. Langmuir, 2004. 20: p. 5109-5113.
 90.Ghodbane, O., L. Roué, and D. Bélanger, Copper electrodeposition on pyrolytic graphite electrodes: Effect of the copper salt on the electrodeposition process. Electrochimica Acta, 2007. 52(19): p. 5843-5855.
 91.Kang, X.H., Z.B. Mai, X.Y. Zou, P.X. Cai, and J.Y. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry, 2007. 363: p. 143-150.
 92.Yang, J., W.-D. Zhang, and S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosensors and Bioelectronics, 2010. 26(1): p. 279-284.
 93.Benuzzi, M.L.S., S.V. Pereira, J. Raba, and G.A. Messina, Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode. Microchimica Acta, 2016. 183: p. 397-405.
 94.Ondarçuhu, T. and C. Joachim, Drawing a single nanofibre over hundreds of microns. Europhysics Letters, 1998. 42(2): p. 215-220.
 95.Martin, C.R., Membrane-based synthesis of nanomaterials. Chemistry of Materials, 1996. 8(8): p. 1739-1746.
 96.Ma, P.X. and R. Zhang, Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research, 1999. 46(1): p. 60-72.
 97.Whitesides, G.M. and B. Grzybowski, Self-assembly at all scales. Science, 2002. 295: p. 2418-2421.
 98.Demira, M.M., I. Yilgorb, E. Yilgorb, and B. Erman, Electrospinning of polyurethane fibers. Polymer, 2002. 43(11): p. 3303-3309.
 99.Huang, Z.-M., Y.-Z. Zhang, M. Kotakic, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63: p. 2223-2253.
 100.Luo, C.J., S.D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, Electrospinning versus fibre production methods: from specifics to technological convergence. Chemical Society Review, 2012. 41: p. 4708-4735.
 101.Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996. 7(3): p. 216-223.
 102.Agarwal, S., A. Greiner, and J.H. Wendorff, Functional materials by electrospinning of polymers. Progress in Polymer Science, 2013. 38: p. 963-991.
 103.Lombardi, M., P. Palmero, M. Sangermano, and A. Varesano, Electrospun polyamide-6 membranes containing titanium dioxide as photocatalyst. Polymer International, 2010. 60(2): p. 234-239.
 104.Lim, J.-M., G.-R. Yi, J.H. Moon, C.-J. Heo, and S.-M. Yang, Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir, 2007. 23(15): p. 7981-7989.
 105.Yi, L., X. Meng, X. Tian, W. Zhou, and R. Chen, Wettability of electrospun films of microphase-separated block copolymers with 3,3,3 trifluoropropyl substituted siloxane segments. The Journal of Physical Chemistry C, 2014. 118(46): p. 26671-26682.
 106.Srikar, R., A.L. Yarin, C.M. Megaridis, A.V. Bazilevsky, and E. Kelley, Desorption-limited mechanism of release from polymer nanofibers. Langmuir, 2008. 24(3): p. 965-974.
 107.Sill, T.J. and H.A.v. Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
 108.Wu, H., L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Letters, 2010. 10(10): p. 4242-4248.
 109.Sen, R., B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, and R.C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Letters, 2004. 4(3): p. 459-464.
 110.Ramakrishna, S., R. Jose, P.S. Archana, A.S. Nair, R. Balamurugan, J. Venugopal, and W.E. Teo, Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. Journal of Materials Science, 2010. 45(23): p. 6283-6312.
 111.Kumar, P.S., J. Sundaramurthy, S. Sundarrajan, V.J. Babu, G. Singh, S.I. Allakhverdiev, and S. Ramakrishna, Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & Environmental Science, 2014. 7: p. 3192-3222.
 112.Bhardwaj, N. and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 2010. 28(3): p. 325-347.
 113.Baji, A., Y.-W. Mai, S.-C. Wong, M. Abtahi, and P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 2010. 70: p. 703-718.
 114.Li, D. and Y. Xia, Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 2004. 16(14): p. 1151-1170.
 115.Reneker, D.H., A.L. Yarin, H. Fong, and K. Sureeporn, Bending instability of electrically charged liquid jets of polymer solution in electrospinning. Journal of Applied Physics, 2000. 87: p. 4531-4547.
 116.Shin, Y.M., M.M. Hohman, M.P. Brenner, and G.C. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer, 2001. 42: p. 9955-9967.
 117.Zuo, W.W., M.F. Zhu, W. Yang, H. Yu, Y.M. Chen, and Y. Zhang, Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering & Science, 2005. 45: p. 704-709.
 118.Zhang, C., Q. Yang, N. Zhan, L. Sun, H. Wang, Y. Song, and Y. Li, Silver nanoparticles grown on the surface of PAN nanofiber: Preparation, characterization and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 362: p. 58-64.
 119.Bao, Y., C. Lai, Z. Zhu, H. Fong, and C. Jiang, SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Advances, 2013. 3: p. 8998-9004.
 120.Zhang, L., X. Gong, Y. Bao, Y. Zhao, M. Xi, C. Jiang, and H. Fong, Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced raman scattering. Langmuir, 2012. 28(40): p. 14433-1440.
 121.Wang, J., H.-B. Yao, D. He, C.-L. Zhang, and S.-H. Yu, Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors. ACS Applied Materials and Interfaces, 2012. 4(4): p. 1963-1971.
 122.Zhu, H., M. Du, M. Zhang, P. Wang, S. Bao, L. Wang, Y. Fu, and J. Yao, Facile fabrication of AgNPs/(PVA/PEI) nanofibers: High electrochemical efficiency and durability for biosensors. Biosensors and Bioelectronics, 2013. 49: p. 210-215.
 123.Ouyang, Z., J. Li, J. Wang, Q. Li, T. Ni, X. Zhang, H. Wang, Q. Li, Z. Su, and G. Wei, Fabrication, characterization and sensor application of electrospun polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles. Journal of Materials Chemistry B, 2013. 1: p. 2415-2424.
 124.Mondal, K., M.A. Ali, V.V. Agrawal, B.D. Malhotra, and A. Sharma, Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Applied Materials and Interfaces, 2014. 6: p. 2516-2527.
 125.Huang, Y., Y.-E. Miao, S. Ji, W.W. Tjiu, and T. Liu, Electrospun carbon nanofibers decorated with Ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS Applied Materials and Interfaces, 2014. 6(15): p. 12449-12456.
 126.Fu, J., D. Li, G. Li, F. Huang, and Q. Wei, Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol. Journal of Electroanalytical Chemistry, 2015. 738: p. 92-99.
 127.Bao, S., M. Du, M. Zhang, H. Zhu, P. Wang, T. Yang, and M. Zou, Facile fabrication of polyaniline nanotubes/gold hybrid nanostructures as substrate materials for biosensors. Chemical Engineering Journal, 2014. 258: p. 281-289.
 128.Zhu, H., M. Zhang, S. Cai, Y. Cai, P. Wang, S. Bao, M. Zou, and M. Du, In situ growth of Rh nanoparticles with controlled sizes and dispersions on the cross-linked PVA–PEI nanofibers and their electrocatalytic properties towards H2O2. RSC Advances, 2014. 4: p. 794-804.
 129.Mabbott, G.A., An introduction to cyclic voltammetry. Journal of Chemical Education, 1983. 60(9): p. 697-702.
 130.Roussel, T.J., D.J. Jackson, R.P. Baldwin, and R.S. Keynton, Amperometric techniques, in Encyclopedia of microfluidics and nanofluidics, D. Li, Editor. 2008, Springer US: New York. p. 39-47.
 131.Castillo-Ortega, M.M., J. Romero-García, F. Rodríguez, A. Nájera-Luna, and P.J. Herrera-Franco, Fibrous membranes of cellulose acetate and poly(vinyl pyrrolidone) by electrospinning method: Preparation and characterization. Journal of Applied Polymer Science, 2010. 116(4): p. 1873-1878.
 132.Xiang, H., Y. Long, X. Yu, X. Zhang, N. Zhao, and J. Xu, A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. CrystEngComm, 2011. 13: p. 4856-4860.
 133.Bai, J., Y. Li, C. Zhang, X. Liang, and Q. Yang, Preparing AgBr nanoparticles in poly(vinyl pyrrolidone) (PVP) nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 329(3): p. 165-168.
 134.Washio, I., Y. Xiong, Y. Yin, and Y. Xia, Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006. 18: p. 1745-1749.
 135.Wu, S., F. Li, H. Wang, L. Fu, B. Zhang, and G. Li, Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer, 2010. 51(26): p. 6203-6211.
 136.Wang, Y., Y. Zhou, W. Wang, and Z. Chen, Sustained deposition of silver on copper surface from choline chloride aqueous solution. Journal of The Electrochemical Society, 2013. 160(3): p. D119-D123.
 137.Butovsky, E., I. Perelshtein, and A. Gedanken, Air stable core–shell multilayer metallic nanoparticles synthesized RAPET: fabrication, characterization and suggested applications. Journal of Materials Chemistry, 2012. 22: p. 15025-15030.
 138.O'Halloran, M.P., M. Pravda, and G.G. Guilbault, Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta, 2001. 55(3): p. 605-611.
 139.Ensafi, A.A. and S. Behyan, Sensing of l-cysteine at glassy carbon electrode using Nile blue A as a mediator. Sensors and Actuators B, 2007. 122: p. 282-288.
 140.Silva, C.d.C.C.e., M.C. Breitkreitz, M. Santhiago, C.C. Corrêa, and L.T. Kubota, Construction of a new functional platform by grafting poly(4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of l-cysteine. Electrochimica Acta, 2012. 71: p. 150-158.
 141.Lee, M.-Y., S.-J. Ding, C.-C. Wu, J. Peng, C.-T. Jiang, and C.-C. Chou, Fabrication of nanostructured copper phosphate electrodes for the detection of α-amino acids. Sensors and Actuators B, 2015. 206: p. 584-591.
 142.Lee, M.-Y., J. Peng, and C.-C. Wu, Geometric effect of copper nanoparticles electrodeposited on screen-printed carbon electrodes on the detection of a-, b- and g-amino acids. Sensors and Actuators B: Chemical, 2013. 186: p. 270-277.
 143.Thota, R. and V. Ganesh, Simple and facile preparation of silver–polydopamine (Ag–PDA) core–shell nanoparticles for selective electrochemical detection of cysteine. RSC Advances, 2016. 6: p. 49578-49587.
 144.Cumba, L.R., U.d.O. Bicalho, and D.R.d. Carmo, Preparation and voltammetric studies of titanium (IV) phosphate modified with silver hexacyanoferrate to a voltammetric determination of l-cysteine. International Journal of Electrochemcal Science, 2012. 7: p. 4465-4478.
 145.Majidi, M.R., K. Asadpour-Zeynali, and B. Hafezi, Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochimica Acta, 2009. 54(3): p. 1119-1126.
 146.Qiu, R., H.G. Cha, H.B. Noh, Y.B. Shim, X.L. Zhang, R. Qiao, D. Zhang, Y.I. Kim, U. Pal, and Y.S. Kang, Preparation of dendritic copper nanostructures and their characterization for electroreduction. Journal of Physical Chemistry C, 2009. 113: p. 15891-15896.
 147.Nikolić, N.D., K.I. Popov, L.J. Pavlović, and M.G. Pavlović, Morphologies of copper deposits obtained by the electrodeposition at high overpotentials. Surface and Coatings Technology, 2006. 201(3-4): p. 560-566.
 148.Wang, A.-J., S.-F. Qin, D.-L. Zhou, L.-Y. Cai, J.-R. Chen, and J.-J. Feng, Caffeine assisted one-step synthesis of flower-like gold nanochains and their catalytic behaviors. RSC Advances, 2013. 3: p. 14766-14773.
 149.Wu, W.-Q., H.-S. Rao, Y.-F. Xu, Y.-F. Wang, C.-Y. Su, and D.-B. Kuang, Hierarchical oriented anatase TiO2 nanostructure arrays on flexible substrate for efficient dye-sensitized solar cells. Scientific Reports, 2013. 3(1892): p. 1-7.
 150.Ensafi, A.A., M.M. Abarghoui, and B. Rezaei, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochimica Acta, 2014. 123: p. 219-226.
 151.Jia, D., Q. Ren, L. Sheng, F. Li, G. Xie, and Y. Miao, Preparation and characterization of multifunctional polypyrrole–Au coated NiO nanocomposites and study of their electrocatalysis toward several important bio-thiols. Sensors and Actuators B, 2011. 160(1): p. 168-173.
 152.Luo, X., A.J. Killard, A. Morrin, and M.R. Smyth, Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Analytica Chimica Acta, 2006. 575(1): p. 39-44.
 153.Özkan, Y., E. Özkan, and B. Şimşek, Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. International Journal of Cardiology, 2002. 82(3): p. 269-277.
 154.Kannan, P. and A. John, Ultrasensitive detection of l-cysteine using gold–5-amino-2-mercapto-1,3,4-thiadiazole core–shell nanoparticles film modified electrode. Biosensors and Bioelectronics, 2011. 30: p. 276-281.
 
 |